
TAKE CARE, SPYWARE IS SLIPPING INTO YOUR

PHONES THROUGH OPERATION POISONED

NEWS

Ecular Xu, Elliot Cao, Lilang Wu & William Gamazo Sanchez

Trend Micro, USA

ecular_xu@trendmicro.com

405408272@qq.com

574407955@qq.com

william_gamazosanchez@trendmicro.com

30 September - 2 October, 2020 / vblocalhost.com

www.virusbulletin.com

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

2 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

ABSTRACT
According to multiple statistical sources, mobile iOS systems are second in worldwide deployments behind Android
systems. At same time, in recent years there has been an increase in the quality and amount of research published relating
to the security of iOS systems. These two factors contribute to iOS being selected as a target operating system for malicious
activity in certain conditions.

This paper will describe the details of a campaign targeting iOS users in Hong Kong using publicly known vulnerabilities and
custom designed spying tools. Although most of the paper focuses on the iOS technical aspect there is also a section dedicated
to Android, as during the investigation the same campaign was found to also be targeting Android users. It is out of the scope of
this paper to speculate about the attribution of these attacks and instead we focus on the technical details. However, based on
the analysis it is clear that one of the intentions was to extract as much information as possible from the compromised devices
and to control them remotely. We will present an approximate timeline analysis of the vulnerabilities exploited in the campaign.

INTRODUCTION
The discovery of this campaign was the result of a custom-built internal system capable of monitoring samples captured
from different sources. The system does attribution on the captured samples, employing both automatic and manual
analysis, with the manual analysis part employing the abilities of experienced threat researchers. The initial discovery was
an HTML sample with suspicious indicators picked up by the automatic analysis, which required further manual analysis.
Once the HTML sample was found to be malicious the investigation started. The initial analysis quickly concluded that the
HTML sample was exploiting a publicly known vulnerability on the Safari browser, and the exploitation techniques it was
using were also publicly known.

It was found that one of the attack sources was from four different forums of Hong Kong-based users. Attackers posted
links on the forums to malicious web pages that then redirected the users to actual news websites to disguise the fact that
they were under attack. The campaign designed several web pages with the same intention and injected them with an
iframe that loads an iOS exploit. Users with unpatched iPhones that accessed the concerned links would be infected with an
iOS malware that can spy on and take full control of the device. The iOS exploit was designed to target vulnerable iOS
versions 12.1 and 12.2 on several models ranging from the iPhone 6S to the iPhone X.

The Safari vulnerability exploited in this campaign was publicly known but the installed malware was new and the name
‘lightSpy’ was selected for it. lightSpy is a modular backdoor that allows the attacker to remotely execute a shell command
and manipulate files on the infected device. It is also implemented with several functionalities through different modules
for exfiltrating data from the infected device, including:

• Hardware information

• Contacts

• Keychain

• SMS messages

• Phone call history

• GPS location

• Connected Wi-Fi history

• Browser history of Safari and Chrome

The malware also reports the surrounding environment of the device by:

• Scanning the local network IP address

• Scanning available Wi-Fi networks

The campaign also employs modules specifically designed to exfiltrate data from popular messaging applications such as
QQ, WeChat and Telegram.

Our research revealed that the campaign also targeted Android devices in 2019, with the URL links of a malicious APK file
posted on public Hong Kong-based Telegram channels. The message that the threat actors sent was disguised as a
promotion of a seemingly legitimate application, luring Android users to install it on their devices. The malware can also
exfiltrate device information, contacts, and SMS messages. The Android malware was also new and was named ‘dmsSpy’.

We dubbed the campaign ‘Operation Poisoned News’.

ATTACK CHAIN

Watering hole attack tactic

On 19 February, we started noticing a watering hole attack targeting iOS users. The malicious web page crafted by the
attacker contained three iframe links to three different sites, with only one that was visible on the browser. The visible link

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

3VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

connected to a page from a legitimate news website to make users believe they were looking at the original news website.
One invisible iframe connected back to the web server for the visitor statistic. Another invisible iframe connected to another
server, which hosted the main script of the Safari browser exploit.

Figure 1: HTML code of the malicious website with three iframes.

The threat actors further tricked users on the source of these malicious news web pages by posting them on four different
forums of Hong Kong-based users. All of these forums are popular and provide their own mobile applications for their
users. Operation Poisoned News usually posted the topic on the general discussion section of the forums.

The forum post includes the news headline, the pictures from the news, and the malicious link the threat actors prepared.
The forum accounts we found were registered immediately before the malicious link was posted. We believe it was directly
posted by the campaign, and not a case where people reshared the news links from another source.

The news topics selected as a lure were mostly related to sexually implied headlines or those related to the COVID-19
disease. We believe these topics weren’t used to target specific users.

Figure 2: List of news topics posted by the campaign.

Figure 3: Forum post with link to malicious site.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

4 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

We also found a second type of watering hole website that did not use an iframe to load news websites. The page directly
copied the original news page and injected the iframe linked to the campaign’s exploit server. Our telemetry data shows that
this type of watering hole was distributed in Hong Kong starting 2 January. However, we were not able to identify where
the malicious link was distributed at that time.

Figure 4: Copied news page with an iframe that loads the remote exploit.

Infection chain

Analysing the original captured HTML sample shows that the attack was designed to exploit iOS versions 12.1 and 12.2,
targeting iPhone models from the 6S up to the iPhone X. Figure 5 shows how the exploit checks for different supported iOS
and device versions.

Figure 5: Code checking for target iOS devices.

The full exploit chain involves exploiting a silently patched Safari bug on multiple recent iOS versions and a customized
kernel exploit. Once the Safari browser renders the exploit, a silently patched bug is taken advantage of, which leads to the
exploitation of a known kernel vulnerability to gain root privileges. The exploited kernel bug has been assigned the CVE ID
CVE-2019-8605 [1].

However, the silently patched bug exploited on Safari does not have an assigned CVE ID; some researchers also noted an
associated history of failed patches [2].

After compromising a device, the attacker installs undocumented and sophisticated spyware for maintaining control over
the device and exfiltrating information. The spyware has a modular design with multiple capabilities, such as:

• Modules update

• Remote command dispatch per module

• Complete shell command module

Many of the modules were designed for data exfiltration; for example, there are modules for stealing information from
WeChat and Telegram. Figure 6 shows the full attack chain and names the modules initially downloaded and configured.

As mentioned before, the malware was named ‘lightSpy’. Light is the module manager of this iOS spyware architecture.
While analysing the payload, payload.dylib, we noticed that the decoded configuration file used by launchctl shows a URL
that points to /androidmm/light, which hints that there is probably also an Android version of lightSpy, as shown in
Figure 7.

The payload is signed using the Apple developer certificate chain, probably to evade detection. The campaign is relatively
new, based on the signature date (29 November 2019), as shown in Figure 8.

The next sections describe each stage of the full attack chain for iOS, including an analysis of the lightSpy malware. The
final section covers the Android APK and how it is related to the Operation Poisoned News campaign.

Vulnerability timeline

The exploited vulnerability in Operation Poisoned News does not to have a CVE ID assigned and was a bug silently
patched by the WebKit developers. It is useful to perform a timeline analysis of the bug in order to understand and
speculate about why this bug was selected by the attackers and find possible indications as to when the campaign started
using it.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

5VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 6: lightSpy infection chain.

Figure 7: Config file hints at Android counterpart.

Figure 8: Signed time indicates late November 2019.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

6 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

The Safari browser [3] is based on open source WebKit browser engine [4]. One of the components of WebKit is the
JavascriptCore, the JavaScript engine, and this is where the exploited bug is present. On 5 July 2019 a known iOS
researcher, Luca Todesco [5], posted on Twitter that he had come across a bug in JavascriptCore. Figure 9 shows the
original tweet (still available at the time of writing).

Figure 9: JavascripCore bug post.

At the time the tweet was posted the bug was fixed, but Apple had not released an update yet. The Apple policy on
internally discovered bugs and CVE assignment [6] states that CVEs will be assigned to internally discovered bugs if the
bug is unusually noteworthy. In practice, the bug was fixed in a publicly tracked case [7] without an actual Apple security
update available yet. Figure 10 shows the bug timeline.

Figure 10: JavascriptCore bug timeline.

As the timeline shows, the bug remained an exploitable 0-day for 17 days. That provides a very good opportunity for the
attacker, considering that after 17 days they would still have some time after the update was released before it was actually
installed on users’ iPhone devices. However, it is important to note that, from the point of view of Apple, this is an n-day
because the bug was fixed in development, but from the point of view the customer it is a 0-day because affects the devices
that users are actually using.

How does this timeline match the iOS and Safari versions? The versioning can be confusing because multiple software
components are involved. Basically, there are three major software components: iOS by itself, Safari and WebKit. Figure 11
shows the versions correlated with the vulnerability timeline.

Figure 11: iOS updates.

The table shows that iOS versions prior to 12.4 are vulnerable.

There is another aspect: the captured exploit only targeted devices with iOS version from 12.1 to 12.2. That means the
attackers were targeting unpatched devices because at the time of the published PoC, iOS 12.3 version was already
published, which it is vulnerable but not included in the exploit chain.

The conclusion from this analysis is that the group behind the attack were not looking to use the 17-day window of the
‘customer side’ 0-day. Rather, the attacker was interested in unpatched devices not updated since 25 March 2019 [8].

EXPLOIT ANALYSES
Even though the exploited bug and code execution techniques used in the captured exploit are known in the research community
[9], this se ction will cover the exploit stages, providing some details focusing on what is unique to the analysed samples.

The JavaScriptCore exploit

To briefly describe the exploit used to deploy lightSpy, the following will be covered:

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

7VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

1. Bug triggering: The use of the ‘silently patched’ vulnerability.

2. The addrof/fakeobj primitives: The use of generic exploit primitives to build an arbitrary R/W primitive from
faked objects.

3. Arbitrary address read/write primitive: Taking advantage of the final WebAssembly arbitrary R/W primitives to
overwrite the WebAssembly object.

4. Shellcode execution: The exploit shellcode execution that precedes the kernel exploit to get root privileges on the
devices.

Bug triggering

This bug is a JIT (just-in-time)-type confusion bug in Safari’s JavaScript engine JavaScriptCore.

Figure 12: Bug PoC.

1. The for loop triggers the JIT bug on the victim() function.

2. In the victim() function, the expression ‘let r = 5 in oj;’ triggers the has() callback function.

3. Because the ‘hack’ flag has been set to 1 after the loop calling the victim() function being JIT’ed, the ‘if’ branch is
executed and confuse[1] is set to an object. So the array ‘confuse’ is converted from ‘ArrayWithDouble’ to
‘ArrayWithContigous’ by this callback.

The problem is JIT does not know there could be a side effect in this callback and the second element of ‘confuse’ is a
pointer, which was a number, and still treats the array ‘confuse’ as ‘ArrayWithDouble’, causing the type confusion.

The addrof/fakeobj primitives

The addrof and fakeobj primitives were introduced from a Phrack article [9]. The addrof() function is used to leak the
memory address of the given JavaScript object, and the fakeobj() function is used to accept some given address and return a
faked JavaScript object at that location.

Because of the JIT-type confusion bug, the addrof and fakeobj primitives can easily be implemented by confusing a double
and a pointer in the array. Figure 13 shows the addrof and fakeobj primitives.

Arbitrary address read/write primitive

After getting addrof/fakeobj, it sprays 0x5000 Float64Array and a few WebAssembly objects. It is easy to build a faked and
effective Structure ID of 0x5000, which matches the real Structure ID of the sprayed Float64Array. Next, it uses the
Structure ID and fakeobj to get a faked object, and adds the Structure ID to get a faked WebAssembly.Memory object. It
then creates a faked wasmInternalMemory, which has a large size, and sets it as the faked WebAssembly.Memory object’s
memory property (Figure 14).

Finally, it gets a stable memory read/write primitive by this faked WebAssembly.Memory object, as shown in Figure 15.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

8 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 13: The addrof and fakeobj primitives.

Figure 14: Faked Structure ID, WebAssembly.Memory, and wasmInternalMemory (top), and faked objects (bottom).

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

9VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 15: Memory read/write primitives.

Shellcode execution

After getting the arbitrary address read/write primitive, the exploit achieves the shellcode execution in stage two.

It creates a JIT’ed function and gets the function address by the exported symbol ‘startOfFixedExecutableMemoryPool’.
After that, it builds a return-oriented programming (ROP) chain to write the shellcode to the JIT page and creates a
temporary stack to execute the ROP chain:

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

10 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 16: Temp stack for executing the ROP chain.

Since the payload contains the jailbreak code after the successful execution of the payload, it will get root privilege.

The next section describes how the payload gets root privilege.

Kernel exploit

In this section, we mainly introduce the local privilege escalation exploit chain used in this attack. All the exploit codes can
be found in the payload.dylib payload.

In the jailbreak rootkit published on GitHub by @pwn20wnd & @sbingner [10], it integrates the following public exploits:

Indicator Attribution Description

empty_list [11] CVE-2018-4243 iOS 11.0 - 11.3.1

multi_path exploit [12] CVE-2018-4241 iOS 11.2 - 11.3.1

async_wake [13] CVE-2017-13861 iOS 11.1.2

Voucher_swap [14] CVE-2019-6225 iOS 11.2 - iOS 12.1.2

mach_swap [15] CVE-2019-6225 iOS 11 - 12.1.2 (<=A9 devices only)

mach_swap2 [16] CVE-2019-6225 iOS 11 - 12.1.2 (on A7 - A11 devices)

Table 1: Public exploits used by an iOS jailbreak rootkit.

To support the iOS 12.2.* versions, this attack campaign used another vulnerability (CVE-2019-8605), which was found by
Google Project Zero member Ned Willamson. There are also different exploit versions published on GitHub. In our
findings, the campaign used the exploit host in sock_port [17], which supports iOS 10.0-12.2 and extends the jailbreak
ability.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

11VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 17: Where the privilege escalation attack starts.

Not only did the sock_port [18] project use CVE-2019-8605 to get the receive rights of the kernel task port in the
get_tfp0() function, it also supports most devices with system versions between 10.0 and 12.2. Therefore, in the exploit
chain of this campaign, it simply integrates these codes to help to achieve the tfp0, as shown in Figure 18.

Figure 18: The get_tfp0() function.

Figure 19: The get_tfp0 function in payload.dylib, which is the same as the sock_port project.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

12 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 20: After getting the tfp0, it initializes the patch handler, which can help find the address of necessary function
symbols.

Figure 21: Combining the kernel slides, it resets the real address for those symbols.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

13VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 22: The kernel task’s cred value is then stolen for the current process so that it becomes root.

After that, it first gets the address of the IOSurfaceRootUserClient port then uses it to get the address of the actual client
and vtable. It then creates a fake client with a fake vtable and overwrites the existing client with the fake one. Finally, the
IOUserClient::getExternalTrapForIndex function in vtable gets replaced with the ROP gadget (add x0, x0, #0x40; ret;) so it
can use IOConnectTrap6 to call any function in the kernel as the kernel itself.

Figure 23: Code overwriting with the fake client and fake vtable.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

14 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 24: Code showing the completed jailbreak operation.

THE IOS MALWARE LIGHTSPY

After gaining full kernel privilege, it downloads many malicious libraries to target applications.

Figure 25: Downloaded modules.

Startup loader

The tool launchctl loads and unloads daemons or agents. After downloading all the payloads, the exploit spawns a daemon
using launchctl with ‘ircbin.plist’ as the argument (Figure 26).

This daemon uses irc_loader as an executable. This loader is just a launcher and will be used to start up the main
malicious agent deployed on the target side. It first parses the C&C ‘IP:PORT’ address then the download address
(Figure 27).

The startup parameters are hidden in the irc_loader binary and are encrypted with the AES algorithm. The parameters after
decryption are shown in Figure 28.

After getting these parameters, it will use them to launch another module called ‘light’ (Figure 29).

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

15VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 26: The launchctl tool is used with ircbin.plist as the argument.

Figure 27: The irc_loader as an executable.

Figure 28: The parameters after decryption.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

16 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 29: Loading the ‘light’ module.

Light, the main malicious control agent

After the ‘light’ module starts up, it first initializes a database, which is used to store all the control information.

Figure 30: Database is initialized for control information.

The SQL statement includes the following:

CREATE TABLE IF NOT EXISTS t_transport_control (id integer PRIMARY KEY AUTOINCREMENT, cmd
integer, wifi integer, mobile integer

CREATE TABLE IF NOT EXISTS t_command_plan (id integer PRIMARY KEY AUTOINCREMENT,type
integer,start integer,stop integer,interval integer , interval_pos integer,cmd integer,arg text NOT NULL

CREATE TABLE IF NOT EXISTS t_command_record (id integer PRIMARY KEY AUTOINCREMENT,cmd
integer, arg text, status integer,type integer, response text, starttime integer

CREATE TABLE IF NOT EXISTS t_config (id integer PRIMARY KEY AUTOINCREMENT, key text, value text

CREATE TABLE IF NOT EXISTS t_dormant_control (id integer PRIMARY KEY AUTOINCREMENT, key text,
value integer

CREATE TABLE IF NOT EXISTS t_plugin (id integer PRIMARY KEY AUTOINCREMENT,name text NOT
NULL,version text,md5 text,url text,path text,classname text,initparam text,isupdate integer,isdelete
integer,downstatus integer

After that, it initializes a thread using the libwebsockets [19] library to implement the messages’ receiving function.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

17VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 31: Communication flow.

The libwebsockets framework supports registering a callback broker as a protocol when creating the web socket handler.
After this thread starts, the callback broker is responsible for managing the status of the socket handler.

Figure 32: Callback broker.

The broker method (for managing the lifecycle of the web socket handler) uses an interrupted reason to trap into a different
handler method. Among those reasons, LWS_CALLBACK_CLIENT_RECEIVE reason, whose value is 8, is responsible
for receiving the commands sent from the C&C server in this attack event.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

18 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 33: Broker method used for managing the lifecycle of the web socket handler.

After getting the message, it will call the DealFrameCommand() function to deal with each kind of message, such as
config, command plan, and command execution messages.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

19VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 34: A sample showing how it deals with command plan messages.

An init() then thread initializes the plug-in loading. The initialized process is shown in FIgure 35.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

20 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 35: Plug-in loading gets initialized.

The plug-in loading method is notable: it first gets the plug-in name, path and classname, then uses the path to load the
plug-in file through the dlopen() function. After that, it uses the objc_getClass() function to get the exposed class object,
with ‘classname’ as the argument. This way, the Light module can get each plug-in’s main class object and use these class
objects to start up their own thread.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

21VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 36: The objc_getClass() function with ‘classname’ as argument.

Figure 37: With baseinfoaaa.dylib module as an example, it first calls the init() method.

Figure 38: It then starts up the run loop.

After all the plug-ins load successfully, attackers can send the control commands for this malicious agent. The agent will
dispatch these commands to different modules.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

22 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 39: The agent calls the ExeCommand:arg: function, which is in the CommandThread class, to execute the
commands.

Figure 40: The ExeCommand:arg: function uses a related plug-in object to call its own StartCommand:Argv: function for
executing corresponding commands.

BasicInfo module (Command ID 11000)

This module is mainly for gathering and uploading information such as iPhone hardware information, contacts, SMS
messages, and phone calls.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

23VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 41: The BasicInfo module gathers different iPhone information.

Figure 42: Code that gathers the targets’ SMS information.

ShellCommandaaa module (Command ID 20000)

This module is mainly used for executing shell commands.

Figure 43: The ShellCommandaaa module for executing shell commands.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

24 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 44: The popen function is used to fork a child process and execute shell commands.

The module will upload the execution result if necessary. Here it uses the dictToJsonData() function to serialize the result
and post the data to the hxxp://… /api/shell/result server.

Figure 45: ShellCommandaaa uses the dictToJsonData() function.

KeyChain module (Command ID 31000)

This module is mainly for getting targets’ Keychain information. It uses the SecItemCopyMatching() [20] function with the
following dictionary to copy Keychain items.

Figure 46: The SecItemCopyMatching() function.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

25VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 47: Each item, including the password, certificate, and key, is parsed and added into the return data object.

Figure 48. Sensitive information is uploaded to the hxxp://…/api/keychain/ server.

Screenaaa module (Command ID 33000)

This module is mainly for scanning around the target device. The method it uses goes through these four steps:

1. Determine the target device IP address and the subnet mask.

2. Calculate the range of possible addresses in its subnet. The range is obtained by using logical AND operator, where
operands are binary values of the IP address and subnet mask.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

26 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 49: MMLANScanner start function.

3. Iterate through the range and ping each IP address.

Figure 50: Ping operation via MMLANScanner.

4. Upload the data to the hxxp://…./api/lan_devices/ server using the
 void __cdecl -[LanDevices mainPresenterIPSearchFinished:](LanDevices *self, SEL a2, id a3) function.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

27VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 51: Uploading the data to the server.

SoftInfoaaa module (Command ID 16000)

This module has two sub-command IDs: 16001 and 16002. Command 16001 is used to get the software list, while
command 16002 is used to get the process list.

Figure 52 shows how to get the installed software list (id __cdecl +[AppInfo getAppInfoList](id a1, SEL a2)). It mainly
uses an undocumented application programming interface (API) called installedApplications to achieve that.

Figure 52: Getting the installed software list.

Figure 53 shows how it first calls the ‘ps -Aef’ command to get the process list, then calls the getRunningProcessesList
function to parse for details.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

28 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 53: Getting the process list information.

Figure 54: Getting the process ID (PID), process path, app, to name a few.

Finally, it uploads the software list or process list information to the corresponding server, as shown in Figure 55.

FileManage module (Command ID 15000)

This module is mainly used for file or directory operation, including the following sub-commands: get directory and file
list, upload file, download file, delete file, create directory, rename file, move file, copy file, and get the directories of
applications.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

29VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 55: Getting the software and running processes list.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

30 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 56: Various FileManage module commands.

WifiList module (Command ID 17000)

This module is mainly for getting Wi-Fi information, including Wi-FI history, where the command ID is 17001, and the
Wi-Fi scan list has a command ID of 17002.

Figure 57: Getting the Wi-Fi history and scan list.

Figure 58: Getting the Wi-Fi history by directly reading the data stored in the com.apple.wifi.plist file.

To get the Wi-Fi scan list, it loads the private MobileWiFi framework first and imports necessary functions through the
dlsym function, as shown in Figure 60.

It also creates a Wi-Fi manager using the WiFiManagerClientCreate() function. It then uses
WiFiManagerClientCopyDevices to copy the devices and sets it to UtilNetworksManager object.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

31VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 59: Parsing each item to get the basic service set identifier (BSSID), SSID_STR, lastAutoJoined, lastJoined, and
even the password information.

Figure 60: The dlysym function.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

32 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 61: The WiFiManagerClientCreate() function as Wi-Fi manager.

It then uses the getScanList function to parse the detail properties, including the service set identifier (SSID), MAC,
encryption type, and signal strength information.

Figure 62: The getScanList function.

Browser module (Command ID 14000)

The browser module is mainly used to get the device’s browser history for Safari and Chrome. For Safari, it first loads the
history database from the Safari application path, as shown in Figure 64.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

33VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 63: Uploading sensitive information to the corresponding server.

Figure 64: Getting the Safari browser history.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

34 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

It uses the following Structured Query Language (SQL) statement to query each browser item, then parses each detail’s
properties such as URL, title, and visit time information.

 “select a.id,url,domain_expansion,title,visit_count,visit_time from history_items as a left join history_visits as b on
a.id=b.history_item where a.id>%d order by a.id asc”

Figure 65: Retrieving properties such as URL, title and visit time.

The browser history database of Chrome is located in the ‘/Library/Application Support/Google/Chrome/Default/History’
directory. The rest of the steps are almost identical to those used to get the Safari history.

Figure 66: Getting the Chrome browser history.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

35VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 67: Uploading the history information to the hxxp://…/api/browser_history/ server.

Locationaaa module (Command ID 13000)

This module is mainly used to get the target’s iPhone location information. It includes two sub-commands. When the
command is 13002, it sets up the continuous configuration with the attacker’s parameters.

Figure 68: Command 13002.

Figure 69: Parameters are primarily the update interval and duration.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

36 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 70: Command ID 13001, where a task is added to continue updating the location data using the given configuration.

Figure 71: Uploading the location details with the device info to the hxxp://…/api/location/ server.

The iOS WeChat module (Command ID 12000)

This module is mainly used to collect the target’s WeChat associated information, such as account information, contacts,
groups, messages and files.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

37VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 72: The gathered WeChat information.

The framework for stealing information

The followng steps are used to steal the information:

1. Get the users’ WeChat accounts

 To get the WeChat account information, it first locates the WeChat Documents directory and parses the
LoginInfo2.dat file. This file stores many of the account details using a special format that includes the id of the
person, phone, and name.

Figure 73: Retrieving LoginInfo2.dat, which contains account information.

 It then uses the value of the id of the person to compute an MD5 hash. The id of the person (id_p) is a value, like
‘wxid_xxxx’. WeChat supports multiple users, so it uses this hash to create each account‘s directory for storing
information such as account ID and usage.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

38 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 74: Getting the value of the id of the person.

 After finding each account directory, all the properties, including the id of the person, directory, phone, and
nickname info for each account, will be collected.

Figure 75: Using the value of the id of the person to calculate a hash and using it to find each account directory.

2. Use the collected accounts to get the corresponding information that command ID refers to

 The following figure shows that attackers will repeatedly go through all accounts and execute the upload function.

Figure 76: Attackers will repeatedly go through all accounts and execute the upload function.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

39VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 77: In the upload function, it uses the related handler execute getData() function to get the detailed content, which it
sends to the related server.

WeChat collected information

WeChatAccount

Figure 78: Collecting the head icons for each account.

WeChatGroup

Figure 79: Gathering data in the WCDB_Contact.sqlite database.

It queries this database using the ‘ select dbContactChatRoom,dbContactRemark,userName,ROWID from friend where
ROWID>%d’ SQL statement. After that, it parses each item that contains the ‘chatroom’ string.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

40 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 80: Parsing for the ‘chatroom’ string.

WeChatMessage

This part is mainly used to collect the target’s WeChat message information. To collect the messages, it first collects all the
friends from the WCDB_Contract.sqlite database and filters out unwanted ones like ‘newapp’, then saves the information
into a global dictionary variable named ‘accountMD5’ using the <UserName_MD5Hash, UserName> pattern.

Figure 81: Retrieving the WeChat friends list information and saving it to accountMD5.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

41VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 82: Opening a handler to the MM.sqlite database, which is used to save all the messaging information.

In this database, all the messages sent to certain friends are saved in the Chat_UserNameHash table, so it can iteratively go
through all the tables and then save the messages with UserName_Hash for all friends.

Figure 83: Sending saved messages to Chat_UserNameHash.

It first uses the ‘SELECT CreateTime,Des,MesLocalID,Message,type FROM %@ where MesLocalID>%d’ SQL statement
to get all the message items. Among these columns, the MesLocalID is the name used to save a message file. Type indicates
the message type, including simple message, image, audio, video, and open data, which can get the file type from suffix.

To get an audio message, it first sets up the message type, and then uses the ‘/accountHome/Audio/message_id.aud’ path to
read the content. This way, the attackers collect all the messages.

Figure 84: Getting an audio message.

WeChatContacts

The contacts information is saved in the ‘WCDB_Contact.sqlite’ database.

Figure 85: The WCDB_Contact.sqlite database path.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

42 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

It uses the following SQL statement to get the contacts information:

select dbContactHeadImage,dbContactProfile,dbContactRemark,userName,ROWID from friend where ROWID>%d
order by ROWID

Among these columns, the dbContactHeadImage column is mainly used to store the head image information;
dbContactProfile stores each friend’s profile information, including country, province and city; and the dbContactRemark
field stores each friend’s remark details, such as name and alias.

Figure 86: Getting contacts’ information.

WeChatFile

This module is mainly used to collect all the messages’ file path, which is similar to the WeChatMessage module.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

43VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 87: WeChatFile module.

iOS QQ module (Command ID 25000)

The whole architecture of this module is very similar to that of the WeChat module.

Figure 88: The iOS QQ module.

The only difference here is the location of the information and its format.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

44 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 89: Getting the targets’ QQ information.

iOS Telegram module (Command ID 26000)

The whole architecture of this module is very similar to that of the WeChat module as well.

Figure 90: The iOS Telegram module.

Like the QQ module, the difference here is the location of the information and its format.

To get the target’s account info, it first locates the ‘Documents’ directory. It then goes through the ‘telegram-data’ folder,
then uses the regular expression ‘account-\\d+’ to get the account list.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

45VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 91: Getting the target’s account information.

The other submodules are very similar to the WeChat module.

ANDROID MALWARE DMSSPY

Distribution

While we were tracking the activity of the Operation Poisoned News campaign, we identified two URLs linked to Android
APK files by the domains they used. Both of the URLs were posted on public Telegram channels used by users in Hong
Kong in 2019. The messages had already been deleted when we checked the Telegram channels. However, we were able to
find the text messages from the web page of the Telegram channel cached by the Google search engine.

One of the linked APKs was shared as an application for watching paid porn videos for free. The link was already down
when we checked it. For this one, we were not able to find the original APK file downloaded from the link.

Figure 92: Shared message on Telegram with APK linked to the infrastructure of Operation Poisoned News.

Another APK link was disguised as a calendar application for checking the schedule of upcoming political events in Hong
Kong. Though the link was also down, we managed to find the original file downloaded from it.

Figure 93: A message on Telegram shared malicious APK of Operation Poisoned News.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

46 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 94: Malicious APK disguised as a calendar.

Behaviour analysis

The calendar application shown in Figure 94 requires many sensitive permissions such as READ_CONTACTS, RECEIVE_
SMS, READ_SMS, CALL_PHONE, ACCESS_LOCATION, and WRITE/READ EXTERNAL_STORAGE.

When launched, it first collects device information such as device ID, brand, model, OS version, physical location, and
SDcard file list. It then sends the collected information back to the C&C server.

Figure 95: Going through all files on the SD card.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

47VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 96: Getting the location information.

It also steals contact and SMS information stored in the device. Furthermore, it registers a receiver that monitors new
incoming SMS messages and syncs messages with the C&C server in real time.

Figure 97: The SMS receiver.

USSD code Operator Description

*118*35# CUniq Check remaining credit and expiry date

*#130# CMHK Check remaining credit and expiry date

*109# hkcsl Check main balance checking

##107# 3HK Check credit balance, mobile number and expiry date

*111# hkcsl Password inquiry

Table 2: Trying to download certain USSD codes to query the device’s SIM card information.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

48 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 98: Dialling USSD code.

The app can perform an update by querying the C&C server to fetch the URL of the latest APK file, then downloading and
installing it.

Figure 99: Getting the latest APK file URL.

Figure 100: Installing the APK file.

While checking the communication between the C&C server and the APK malware, we noticed that the server did not
disable the debug mode of the web framework, which allowed us to see the list of APIs used for C&C communication.
Some of the APIs have been used in the malicious calendar application. We suspect that the attacker is still improving the
payload to improve its capabilities.

One of the APIs, called ‘screen_shot’, implies that it may be able to get a screenshot of the device. Another API of
install_apk hints that the attackers would also have the capability to install the additional APK file to infected devices.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

49VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 101: The debug message leaked the APIs of the C&C server.

Not only is the malicious APK downloaded from a server hosted with the domain used by Operation Poisoned News, but
the C&C domain also overlaps with the domain they used to host the malicious news page for the watering hole attack. For
that reason, we believe that the APK malware is operated by the same campaign.

REFERENCES
[1] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8605.

[2] https://twitter.com/qwertyoruiopz/status/1147308549330165760.

[3] https://www.apple.com/safari/.

[4] https://webkit.org/.

[5] https://www.forbes.com/profile/luca-todesco/#396191584d20.

[6] https://trac.webkit.org/wiki/WebKitGTK/MaintenanceTips.

[7] https://bugs.webkit.org/show_bug.cgi?id=196315.

[8] https://www.theiphonewiki.com/wiki/Firmware/iPhone/12.x.

[9] http://phrack.org/papers/attacking_javascript_engines.html.

[10] https://github.com/pwn20wndstuff/Undecimus.

[11] https://github.com/Jailbreaks/empty_list.

[12] https://github.com/GeoSn0w/multi_path-async_wake_utils.

[13] https://github.com/benjibobs/async_wake.

[14] https://bugs.chromium.org/p/project-zero/issues/detail?id=1731#c10.

[15] https://github.com/PsychoTea/machswap.

[16] https://github.com/PsychoTea/machswap2.

[17] https://github.com/jakeajames/sock_port.

[18] https://github.com/jakeajames/sock_port/blob/master/sock_port/exploit.c.

[19] https://github.com/warmcat/libwebsockets.

[20] https://developer.apple.com/documentation/security/1398306-secitemcopymatching.

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

50 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

INDICATORS OF COMPROMISE (IOCS)

Indicator Filename Attribution Trend Micro detection

d5239210a9bc0383f569e9ca095fe8bdfb
9a482bc0c77c8658fcecb23b8a26bc

payload.dylib lightSpy hash IOS_LightSpy.A

4887389ffaf4257b37408eac9f1740eabe8
05f830009cf58185757372f903667

light lightSpy hash IOS_LightSpy.A

3163c8b8deb3cdda9636c87379b1c384d
ec207ce9f15f503ffb4b1ef8cfab945

ircbin.plist lightSpy hash IOS_LightSpy.A

f3f14cdada70d49c3e381cc1b0586018e6
b983af8799d3e6c4bee3494c40e1d6

baseinfoaaa.dylib lightSpy hash IOS_LightSpy.A

23e8884c69176d5cf4da0260cdbb29630
1c0e0afccd473d57033ac1a06f227c3

browser lightSpy hash IOS_LightSpy.A

ce5241de3a378a64266c56fe5094ecbb8b
aa7afd677a3112db8074db78a55df1

 EnviromentalRecording lightSpy hash IOS_LightSpy.A

07c30054c7c22b8b53638367c4c3ad484
a1a336b615e1a6944260d5ec797a66a

FileManage lightSpy hash IOS_LightSpy.A

51d7ebd3af38432c68c913aef48fe26a20
6fda4b52c9f09728df69cab13a4b3b

ios_qq lightSpy hash IOS_LightSpy.A

0dfec52076249d91ec623ea52177352fbc
8fb258db316eac85462c7b459f1a2d

ios_telegram lightSpy hash IOS_LightSpy.A

3c1bfbdfae91f1f248180c2102ed65fbdec
086a334193894db67b0461a0485c5

ios_wechat lightSpy hash IOS_LightSpy.A

1eec0e1ebeefc6667b6ee08e8dede5cd36
ca10697180f10e2d43a2fdebbeefcb

irc_loader lightSpy hash IOS_LightSpy.A

650a5958a06b16aa819e4e86858746750
b8c72a75f31bfdfb6b47fd38d72b602

KeyChain lightSpy hash IOS_LightSpy.A

641d22e38b4135c56b7fb6037a6d76098
ffae9e84664993a3f4c07859b77241e

 locationaaa.dylib lightSpy hash IOS_LightSpy.A

3135efd29cb8b0fab961ddd7ec99e148dc
4c5cca6c3303d60192dc9664849545

 Screenaaa lightSpy hash IOS_LightSpy.A

54c27a8b48b96e63402698d3bba41480a
815d103c92084d467d3c664eec0a7f8

 ShellCommandaaa lightSpy hash IOS_LightSpy.A

1c0316d0194e8008904679242d592d1a2
aeeb2bacef28c7854e4361692a085e7

 SoftInfoaaa lightSpy hash IOS_LightSpy.A

6caa6342caefe3fea23353e850cb2c974e8
607c017661b7410de7a10004b05ec

 WifiList lightSpy hash IOS_LightSpy.A

575890d6f606064a5d31b33743e05654b
9ed9200758a9802491286c6a313139a

HKcalander.apk dmsSpy Hahs AndroidOS_dmsSpy.A

45.134.1[.]180 lightSpy C&C IP
address

45.83.137[.]83 Watering hole
exploit server

app[.]poorgoddaay[.]com dmsSpy C&C
domain

movie[.]poorgoddaay[.]com dmsSpy download
server domain

news[.]poorgoddaay[.]com Watering hole server
domain

appledaily[.]googlephoto[.]vip Watering hole server
domain

TAKE CARE, SPYWARE IS SLIPPING INTO YOUR PHONES... XU ET AL.

51VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

www[.]googlephoto[.]vip Watering hole server
domain

app[.]hkrevolution[.]club dmsSpy download
server domain

news2[.]hkrevolution[.]club Watering hole server
domain

svr[.]hkrevolution[.]club dmsSpy C&C
domain

news[.]hkrevolution[.]club Watering hole server
domain

www[.]facebooktoday[.]cc Watering hole server
domain

news[.]hkrevolt[.]com

www[.]messager[.]cloud

