
A new open-source hypervisor-level malware
monitoring and extraction system – current

state and further challenges

Michał Leszczyński, Krzysztof Stopczański
Virus Bulletin 2020

@127.0.0.1

$ whoami
Michał Leszczyński

● IT Security Engineer @ cert.pl

● malware analysis tools/infrastructure development
● breaking/auditing/fixing web applications

● monk@cert.pl
● https://icedev.pl/
● @icedevml

2

$ whoami
Krzysztof Stopczański

● (Formerly) IT Security Engineer @ cert.pl

● screws up computers
● playing CTFs with p4 team

● krzysztof@stopczanski.pl

3

Introduction

Malware 101

5

what we have what we need

Malware 101

6

● different packers

● the same/similiar malware core

● malware core => easy identification

● … also easy data extraction
what we have what we need

Malware processing at CERT.PL

7

● malware unpacking

● extraction of some interesting stuff

Example:

8

Malware processing at CERT.PL

9

What is a memory dump?

10

● logical dump of the memory at given point of time

● metadata:
○ base address at which dump was made,
○ reason of the dump (e.g. malware made some interesting API call)

● profit? unpacked malware (at least sometimes)

Dynamic unpacking - theory

11

● in order to have good memory dumps, you need good heuristics

● good heuristics need good behavioral monitoring

● why can’t you just use an ordinary sandbox?
○ we do, but...

Malware monitoring
problems

Example #1 - trickbot (1c81272ffc)

13

Example #1 - trickbot (1c81272ffc)
● Well known trojan / stealer

● Packed x86/x64 binaries

● Process hollowing using direct system calls

Sample:
[1] https://mwdb.cert.pl/sample/1c81272ffc28b29a82d8313bd74d1c6030c2af1ba4b165c44dc8ea6376679d9f

References:
[2] https://www.cyberbit.com/blog/endpoint-security/latest-trickbot-variant-has-new-tricks-up-its-sleeve/

[3] https://www.cert.pl/en/news/single/detricking-trickbot-loader/

14

https://mwdb.cert.pl/sample/1c81272ffc28b29a82d8313bd74d1c6030c2af1ba4b165c44dc8ea6376679d9f
https://www.cyberbit.com/blog/endpoint-security/latest-trickbot-variant-has-new-tricks-up-its-sleeve/
https://www.cert.pl/en/news/single/detricking-trickbot-loader/

Example #1 - trickbot (1c81272ffc)

15

Directly making syscalls - not visible on conventional sandboxes

10002600 8B D4 mov edx, esp

10002602 0F 34 sysenter

10002604 C3 ret

References:
[2] https://www.cyberbit.com/blog/endpoint-security/latest-trickbot-variant-has-new-tricks-up-its-sleeve/

https://www.cyberbit.com/blog/endpoint-security/latest-trickbot-variant-has-new-tricks-up-its-sleeve/

Example #2 - remcos (60c07bac07)

16

Example #2 - remcos (60c07bac07)
● Remote Access Trojan

● Packed x86/x64 binaries

● Hollowing svchost.exe using WriteProcessMemory()

Sample:
[4] https://mwdb.cert.pl/sample/60c07bac07c7e2f2f3e03817addb88b38b8fbcd893d4b41b5007d984e8ba1fc5

17

https://mwdb.cert.pl/sample/60c07bac07c7e2f2f3e03817addb88b38b8fbcd893d4b41b5007d984e8ba1fc5

Example #2 - remcos (60c07bac07)
This is how Cuckoo hooks ntdll.dll (for Windows 7 x86):

static int hook_api_jmp_direct(hook_t *h, unsigned char *from,

 unsigned char *to)

{

 // unconditional jump opcode

 *from = 0xe9;

 // store the relative address from this opcode to our hook function

 *(unsigned long *)(from + 1) = (unsigned char *) to - from - 5;

 return 0;

}

TLDR: replace first 5 bytes of the hooked function with a 0xE9 jump
18

Example #2 - remcos (60c07bac07)
This is how Cuckoo hooks ntdll.dll (for Windows 7 x86):

static int hook_api_jmp_direct(hook_t *h, unsigned char *from,

 unsigned char *to)

{

 // unconditional jump opcode

 *from = 0xe9;

 // store the relative address from this opcode to our hook function

 *(unsigned long *)(from + 1) = (unsigned char *) to - from - 5;

 return 0;

}

TLDR: replace first 5 bytes of the hooked function with a 0xE9 jump
19

Example #2 - remcos (60c07bac07)
This is how Cuckoo hooks ntdll.dll (for Windows 7 x86):

static int hook_api_jmp_direct(hook_t *h, unsigned char *from,

 unsigned char *to)

{

 // unconditional jump opcode

 *from = 0xe9;

 // store the relative address from this opcode to our hook function

 *(unsigned long *)(from + 1) = (unsigned char *) to - from - 5;

 return 0;

}

TLDR: replace first 5 bytes of the hooked function with a 0xE9 jump
20

Example #2 - remcos (60c07bac07)

21

… and this is how remcos unhooks:

manually unpacked by @nazywam - thx

Example #2 - remcos (60c07bac07)

22

… and this is how remcos unhooks:

manually unpacked by @nazywam - thx

binary-match first export

Example #2 - remcos (60c07bac07)

23

… and this is how remcos unhooks:

“for each export”

manually unpacked by @nazywam - thx

Example #2 - remcos (60c07bac07)

24

… and this is how remcos unhooks:

override first 5 bytes to
ensure we’re unhooked

manually unpacked by @nazywam - thx

Example #2 - remcos (60c07bac07)

25

… and this is how remcos unhooks:

override first 5 bytes to
ensure we’re unhooked

manually unpacked by @nazywam - thx

Unhooking

26

Of course you can implement anti(2n - 1)-unhooking...

... and they would implement anti(2n)-unhooking …

(Valid for n ∈ Z+)

Example #3 - kronos (6a8419d81f)

27

Example #3 - kronos (6a8419d81f)
● Banking malware

● Packed x86/x64 binaries

● API hammering

Sample:
[5] https://mwdb.cert.pl/sample/6a8419d81fb645c073439e284a988ab540cd514a933ce2b6ee4b776aa50b50ac

28

https://mwdb.cert.pl/sample/6a8419d81fb645c073439e284a988ab540cd514a933ce2b6ee4b776aa50b50ac

Example #3 - kronos (6a8419d81f)
API hammering, pretty long sequence of operations:

● manipulating registry keys
\\REGISTRY\\MACHINE\\Software\\Wow6432Node\\Microsoft\\Windows\\CurrentVersion\\Uninstall\\occidentalconvertors

● creating directories

● etc.

29

Example #3 - kronos (6a8419d81f)
API hammering:

$ cat drakmon.log | grep NtCreateKey | grep occidentalconvertors | wc -l

40484

$ cat drakmon.log | grep NtCreateKey | grep occidentalconvertors | head -n1

{

 "Plugin": "regmon",

 "TimeStamp": "1596380139.796501",

 "ProcessName": "\\Device\\HarddiskVolume2\\Users\\janusz\\Desktop\\MALWAR.EXE",

 "UserName": "SessionID",

 "UserId": 1,

 "PID": 1584,

 "PPID": 804,

 "Method": "NtCreateKey",

 "Key":

"\\REGISTRY\\MACHINE\\Software\\Wow6432Node\\Microsoft\\Windows\\CurrentVersion\\Uninstall\\occidentalconvertors"

}

30

Example #3 - kronos (6a8419d81f)
After uploading to cuckoo.cert.ee:

31

Example #3 - kronos (6a8419d81f)
Our old&rusty Cuckoo 1:

sie 02 17:08:08 rex python[9179]: 2020-08-02 17:08:08,536 [lib.cuckoo.core.guest]

INFO: Starting analysis on guest (id=m, ip=192.168.122.31)

sie 02 17:10:33 rex python[9179]: 2020-08-02 17:10:33,621 [lib.cuckoo.core.scheduler]

ERROR: Analysis failed: [Errno 10054] An existing connection was forcibly closed by

the remote host

sie 02 17:10:35 rex python[9179]: 2020-08-02 17:10:35,608 [lib.cuckoo.core.scheduler]

INFO: Task #132707: analysis procedure completed

(exact reason not known)

32

Let’s do it on our own

33

34

● user mode (problems already mentioned)

● kernel mode

● hypervisor

Let’s do it on our own

35

● user mode (problems already mentioned)

● kernel mode

● hypervisor

Let’s do it on our own

36

Let’s do it on our own
● user mode (problems already mentioned)

● kernel mode

● hypervisor

New dynamic unpacking system

37

● we need something open source to extend it

● must be a pretty decent malware monitor

● … and we will add the memory dump thing

… hypervisor-level monitor? VMI? DRAKVUF?

Virtual Machine
Introspection

What is VMI?

39

● Virtual Machine Introspection

● inspecting VM state using magic programs running purely on host

$ vmi-process-list windows7-sp1

Process listing for VM windows7-sp1-x86 (id=7)

[4] System (struct addr:84aba980)

[220] smss.exe (struct addr:85a44020)

[300] csrss.exe (struct addr:85f67a68)

[336] wininit.exe (struct addr:8601e030)

DRAKVUF

What is DRAKVUF?

41

● blackbox binary analysis system

● “strace” for Virtual Machines

What is DRAKVUF?

42

● blackbox binary analysis system

● “strace” for Virtual Machines

$ drakvuf -d windows7-sp1 …

[SYSCALL] TIME:1571248115.605033 VCPU:1

CR3:0x56ca5000,"\Device\HarddiskVolume2\Windows\System32\WindowsPowerShell\v1.0\powershell.exe" SessionID:1

ntoskrnl.exe!NtProtectVirtualMemory Arguments: 5

 IN HANDLE ProcessHandle: 0xffffffffffffffff

 INOUT PVOID *BaseAddress: 0x13cd08

 INOUT PSIZE_T RegionSize: 0x13cd10

 IN WIN32_PROTECTION_MASK NewProtectWin32: 0x4

 OUT PULONG OldProtect: 0x13cfb0

[SYSCALL] TIME:1571248171.517430 VCPU:0 …

What next?

43

DRAKVUF

44

What we have:

● event tracing on the level of Windows kernel
● stealth - the VM doesn’t see hooks that are applied on the hypervisor

level (in a big simplification)

What we need:

● memory dumps
● WinAPI behavioral analysis

Memory dumps

Memory dumps

46

● we need to dump interesting memory regions

● … at interesting points of run time

● LibVMI features: memory inspection at low level
(read/write/interpret guest kernel’s structures)

● DRAKVUF features: hooks on syscalls (and a little bit more)

Heuristics

47

Hook NtProtectVirtualMemory(process_handle, base_addr, ...):

if (process_handle == ~0ULL) {

 char buf[2];

 __read_vm_memory(base_addr, buf, 2);

 if (buf[0] == 'M' && buf[1] == 'Z') {

 __dump_memory(base_addr, "possible binary detected");

 }

}

Heuristics

48

Hook NtFreeVirtualMemory(process_handle, base_addr, ...):

if (process_handle == ~0ULL) {

 if (__lookup_pagetable(base_addr, &pte_value) == VMI_SUCCESS) {

 bool pte_valid = !(pte_value & (1UL << 0));

 bool page_writeable = !(pte_value & (1UL << 1));

 bool page_executable = !!(pte_value & (1UL << 63));

 if (pte_valid && page_writeable && page_executable) {

 __dump_memory(base_addr, "free called on RWX memory");

 }

 }

}

Memory dumps

49

How to map a single pointer into a corresponding memory region?

__dump_memory(mem_base_address, "possible binary detected");

Memory dumps

50

How to map a single pointer into a corresponding memory region?

__dump_memory(mem_base_address, "possible binary detected");

→ Look inside Virtual Address Descriptors.

Memory dumps

51

VAD - Virtual Address Descriptor

[1] dump.mem 18:15:32> vad(eprocess=0xfa8002992060)

 VAD lev start end com type exe protect filename

 -------------- --- -------------- -------------- ------ ------- ------ -------------------- --------

 0xfa8003228310 7 0x10000 0x1ffff 0 Mapped READWRITE

 0xfa8002ad9440 8 0x20000 0x21fff 0 Mapped READONLY

 0xfa8002063c80 6 0x30000 0x33fff 0 Mapped READONLY

 0xfa800149bc70 7 0x40000 0x42fff 0 Mapped READONLY

 0xfa8002459b10 5 0x50000 0xcffff 7 Private READWRITE

 0xfa80030088b0 8 0xd0000 0xd0fff 1 Private READWRITE

 0xfa8001310850 7 0xe0000 0x146fff 0 Mapped READONLY C:\Windows\System32\locale.nls

 0xfa8001308290 8 0x150000 0x155fff 0 Mapped READONLY

 0xfa8003022430 6 0x160000 0x160fff 0 Mapped READWRITE

 0xfa8002165870 8 0x170000 0x170fff 1 Private READWRITE

 …
 0xfa80020076d0 8 0x7fef4020000 0x7fef405ffff 3 Mapped Exe EXECUTE_WRITECOPY C:\Windows\System32\tapi32.dll

 0xfa80016d6d80 6 0x7fef4060000 0x7fef4097fff 2 Mapped Exe EXECUTE_WRITECOPY C:\Windows\System32\WinSCard.dll

 …
 0xfa80016cbc40 6 0x7fefd020000 0x7fefd036fff 2 Mapped Exe EXECUTE_WRITECOPY C:\Windows\System32\cryptsp.dll

 0xfa8003022a00 7 0x7fefd680000 0x7fefd68efff 2 Mapped Exe EXECUTE_WRITECOPY C:\Windows\System32\cryptbase.dll

Memory dumps

52

What if we don’t have any pointer provided as an argument?

E.g. NtTerminateProcess is not memory-related but it’s still interesting to
know the caller.

Memory dumps

53

What if we don’t have any pointer provided as an argument?

E.g. NtTerminateProcess is not memory-related but it’s still interesting to
know the caller.

→ Perform stack walk.

Memory dumps

54

Known: current CPU context inside syscall
Unknown: 64 bit stack, 32 bit stack (SYSWOW64)

64 bit: _KTHREAD->TrapFrame->Rsp
32 bit: (WOW_CONTEXT*)(_KTHREAD->Teb->TlsSlots[1] + 4)->Esp/Ebp

Memory dumps

55

Stack unwinding?

for (int i = 0; i < 500; i++) {

 addr_t ptr = *(rsp+i);

 if (__has_mmvad(ptr) && __is_executable_page(ptr))

 __add_stack_entry(ptr);

}

Usermode hooking

DRAKVUF’s hooks (simplified)

57

Default altp2m view during execution

DRAKVUF’s hooks (simplified)

58

“Normal view” - used only during single-step

Usermode hooking

59

But why?

● hooks on syscalls are too low-level for us
● sometimes it is possible to extract some information using some

tricks...
● … but we want to have an universal way
● there are WinAPI functions that are not doing any syscalls at all
● full behavioral analysis!

DRAKVUF Demo #2:
Crypto API

http://www.youtube.com/watch?v=7UcgRZ5GhpQ

Usermode hooking

62

Which syscalls are issued when a new DLL is loaded?

Usermode hooking

63

Which syscalls are issued when a new DLL is loaded?

Closest call: NtMapViewOfSection / NtProtectVirtualMemory

Usermode hooking

64

Which syscalls are issued when a new DLL is loaded?

Closest call: NtMapViewOfSection / NtProtectVirtualMemory

DLLs are loaded...

Usermode hooking

65

Which syscalls are issued when a new DLL is loaded?

Closest call: NtMapViewOfSection / NtProtectVirtualMemory

DLLs are loaded…
But they don’t exist in the physical memory (yet).

Usermode hooking

DRAKVUF can’t add breakpoint on a memory which is not yet mapped :(
So…

Usermode hooking
Approach #1:

● let’s hook writes to the page tables (PTE)
● when the hook executes => check if our interesting address is now

mapped
● if so => place a breakpoint on physical memory

Usermode hooking
Approach #1:

● let’s hook writes to the page tables (PTE)
● when the hook executes => check if our interesting address is now

mapped
● if so => place a breakpoint on physical memory

● works!
● pretty complicated code
● very slow

Usermode hooking
Approach #2: cause page faults manually

● override the current RIP with code that would cause page fault, e.g:
mov eax, DWORD [0x12345678]

● execute a single instruction
● revert everything to the original state (overriden code, CPU registers)

Usermode hooking
Approach #2: cause page faults manually

● override the current RIP with code that would cause page fault, e.g:
mov eax, DWORD [0x12345678]

● execute a single instruction
● revert everything to the original state (overriden code, CPU registers)

● fast!
● unstable, invasive

Usermode hooking
Approach #3:

i.e. inject page fault through VMX from the Xen hypervisor level

Usermode hooking
Approach #3:

● stable
● fast
● easy (one line of code)
● somebody did job for us :)

Usermode hooking
How to reach the interesting DLL export?

1. Parse the PE header

Usermode hooking
How to reach the interesting DLL export?

1. Parse the PE header
2. Find image export directory

Usermode hooking
How to reach the interesting DLL export?

1. Parse the PE header
2. Find image export directory
3. Not readable? Page fault

the export directory

Usermode hooking
How to reach the interesting DLL export?

1. Parse the PE header
2. Find image export directory
3. Not readable? Page fault

the export directory
4. Find out the RVA of export

Usermode hooking
How to reach the interesting DLL export?

1. Parse the PE header
2. Find image export directory
3. Not readable? Page fault

the export directory
4. Find out the RVA of export
5. The first instruction of

the exported function is not
accessible? Page fault

Usermode hooking
What if the DLL would be (purposely?) corrupted and the pointer to
IMAGE_EXPORT_DIRECTORY would be invalid?

Our injected page fault would crash the whole Windows system.

Usermode hooking
What if the DLL would be (purposely?) corrupted and the pointer to
IMAGE_EXPORT_DIRECTORY would be invalid?

Our injected page fault would crash the whole Windows system.

Let’s hook KiSystemServiceHandler and pretend that nothing has
happened.

Usermode hooking
Break on KiSystemServiceHandler:

1. Check if we were recently injecting a page fault into this vCPU.
Not “our fault”? Resume the handler and let it cause BSOD.

2. “Our fault”? Emulate ret instruction:
○ Read saved_rip from stack

○ Adjust the CPU context:
info->regs->rip = saved_rip;

info->regs->rsp += sizeof(addr_t);

info->regs->rax = EXCEPTION_CONTINUE_EXECUTION;

Usermode hooking

81

Malware could attempt to override it’s own WinAPI function

● DLLs are shared between processes, Copy On Write occurs when
they are overridden

● the virtual page is moved to another physical address
● our hooks would not be rewritten to the new page :(

Usermode hooking

82

Malware could attempt to override it’s own WinAPI function

● DLLs are shared between processes, Copy On Write occurs when
they are overridden

● the virtual page is moved to another physical address
● our hooks would not be rewritten to the new page :(

● let’s hook the syscall responsible for CoW: MiCopyOnWrite
● let’s rewrite hooks to the new physical page

iexplore.exe - the best test program

83

iexplore.exe - overriding it’s own DLLs

84

iexplore.exe - overriding it’s own DLLs

85

86

user32.dll vs ieframe.dll

iexplore.exe - overriding it’s own DLLs

87

DLLs overridden by IE:

● comdlg32.dll

● ole32.dll

● oleaut32.dll

● user32.dll

● comctl32.dll

iexplore.exe - overriding it’s own DLLs

DRAKVUF Demo

http://www.youtube.com/watch?v=4h9J6S1z08s

DRAKVUF Sandbox

91

Wrapper for DRAKVUF Engine with:

● web interface

● easy installation

● sample queueing

● … much more coming soon!

DRAKVUF Sandbox

92

93

Fully open-source and free ;)

GitHub project

Intel Processor Trace
(coming soon)

15:22 <andyhhp__> oh wow - we've got Cert.pl implementing a VM feature

which we couldn't even perusade Intel to do

15:22 <andyhhp__> this is going to be interesting

95

#xen-devel

96

Intel Processor Trace

Summary

GitHub

98

● DRAKVUF
[6] https://github.com/tklengyel/drakvuf

● DRAKVUF Sandbox
[7] https://github.com/CERT-Polska/drakvuf-sandbox

● LibVMI
[8] https://github.com/libvmi/libvmi

https://github.com/tklengyel/drakvuf
https://github.com/CERT-Polska/drakvuf-sandbox
https://github.com/libvmi/libvmi

Kudos

99

● CERT.PL Reverse Engineers - nazywam, psrok1, msm
→ for many important remarks and hints about malware monitoring

● CERT.PL - BonusPlay, chivay, konstantyc
→ further development of DRAKVUF/DRAKVUF Sandbox

Kudos

100

● Maciej “mak” Kotowicz
→ for providing many good heurstics for memory dumping
(and some hints about them)

● Tamas K. Lengyel
→ a lots of helpful remarks during our research
→ creator/maintainer of DRAKVUF project na GitHub

Self-advertisement
We share a lot of data about malware.
White-hat external researchers could apply at:

mwdb.cert.pl

