
Graphology
of an
Exploit
Hunting for exploits by looking
for the author's fingerprints

Who are we?

ITAY COHEN
Malware Researcher
Co-Maintainer of Radare2 & Cutter
 @megabeets_

EYAL ITKIN
Vulnerability Researcher

@EyalItkin

It all began with
an incident response case

During a complicated attack we found a mysterious 64-bit binary:

1. The binary was very small
2. Unusual debug strings suggested an attempt to exploit a vulnerability
3. Leftover PDB path

S:\Work\Inject\cve-2019-0859\x64\Release\CmdTest.pdb

Tales of a mysterious binary

Reverse-engineering the exploit was pretty straight forward -

A Use-After-Free vulnerability in CreateWindowEx. Used to Elevate Privileges

A quick look at CVE-2019-0859

Script Kiddie?

Script Kiddie?NO
We couldn’t find any public resource of this implementation

It wasn’t written by the attacker!

The exploit and the malware weren’t written by the same authors:

● Different code quality
● Lack of obfuscation
● Timestamps
● PDB paths

Exploit
Distribution 101

Exploit distribution

The exploit is only a single piece of the puzzle

API

Acquiring exploits

Another team in the same organization

Another organization

Offensive Cyber companies

Exploit brokers

Underground forums

Publicly available exploits (Github, Metasploit)

Thinking like
an exploit writer

An exploit is a product and not some PoC on Github.

It needs to support as many versions as possible:

1. 32-bit / 64-bit
2. Windows XP, Vista, 7, 8.0, 8.1, 10

Often we will need direct access to a given syscall:

● syscall gate (assembly)
● syscall numbers

A lot of the code is actually exploit agnostic, and can be reused!

Thinking like an exploit writer

What are we looking for?

Unique Artifacts

Hard coded values
Data tables
Strings
PDB paths

Syscall wrappers
Inline assembly
Crypto

Code Snippets

Techniques & Habits
Leaking
Elevation
Heap Spraying

Framework
Configurations
Code structure
Exploit flow
API

We have our 64-bit sample, let’s search for artifacts in it

Found some candidate, and did a basic search - a shot in the dark

● Surprise: we found the matching 32-bit sample :)

Looks promising, let’s start an extensive hunt with this rule

● Meanwhile, kept looking for more artifacts we could use

One day later, after we saw the results, we couldn’t believe what we found

Looking for clues

949 Samples
(just from the initial hunt)

Identifying the
author

Identifying the vulnerabilities used in each exploit was a tedious task:

● Exploited as 0-Days - Usually well documented in security reports
● Exploited as 1-Days - Mostly nothing. Just good old RE and patch testing
● Sometimes we get lucky to have CVE-IDs in strings / PDBs

Some vulnerabilities were mislabeled by the author / clients :(

● CVE-2016-0165*

Some were exploited just from a patch-diff, without a clear CVE-ID

● CVE-2018-8641

Identifying the vulnerabilities

Volodimir (Volodya), a.k.a BuggiCorp

Developing exploits since 2015

Known clients include:

● Turla
● FIN8
● GandCrab

Exploits both 1-Days and 0-Days

Note: We focused on Windows local privilege escalations (LPEs)

The exploit writer

CVE-2015-2546

CVE-2016-0040

CVE-2016-0165*

CVE-2017-0001

CVE-2018-8641

CVE-2019-1458

CVE-2016-0167

CVE-2016-7255

CVE-2017-0263

CVE-2019-0859

CVE-2019-1132

We can’t pick an arbitrary code line and decide it is an “artifact”

● We need a control group to compare against

Our goal is to show that each exploit writer is unique:

● Had multiple implementation / exploitation decisions to make
● In each decision indeed faced multiple options
● Was consistent once chose a given decision

In order to do that, we reiterated our research method on REvil

● Embeds a 1-Day exploit for CVE-2018-8453

And once again, it worked!

Identifying the fingerprints

PlayBit, a.k.a luxor 2008

Developing exploits since 2013

Known clients include:

● REvil
● LockCrypt

Only exploits 1-Days

Our control group

CVE-2013-3660

CVE-2015-0057

CVE-2015-1701

CVE-2016-7255

CVE-2018-8453

The author’s
fingerprints

Yup, most* exploits start with a call to Sleep(200)

We are not sure why is it there, but it is a distinct feature.

Clue #1 - Sleep()

Goal: Get the OS Major & Minor version numbers

The favorite method is directly parsing ntdll.dll’s IMAGE_NT_HEADERS

Clue #2 - OS Fingerprinting

In order to elevate the target process (by PID) we need SYSTEM’s token

The favorite method is scanning the pslist:

● Using arbitrary-read and arbitrary-write from user-mode
● Traversing the process list in search of both EPROCESS structs
● Updating target’s EPROCESS to point at SYSTEM’s token

However, this update requires delicate ref-count handling

Clue #3 - Token Swap

1. The token is an EX_FAST_REF object (lower ptr bits used as refcount)
2. There is an OBJECT_HEADER before the token, holding another refcount

On 32-bits, we found the following bug (On 64-bits it is calculated OK):

Clue #3 - Token Swap

Evolution: Volodya’s
learning curve

CVE-2015-2546

Worth mentioning

It is clear that Volodya was already quite
professional from the first exploit -

At start, Volodya used to sell the source-code of the exploits to the customers

1. Exploit was properly embedded in the binary
2. Source-level obfuscation was applied to both malware and the exploit
3. Elevation of current PID

Later, Volodya started to sell compiled exploits

1. The exploits are shown as separated binaries (or embedded PE)
2. They contain hard-coded instructions for the customers
3. Elevation of parent PID

From source code to compiled binaries

1. More effective Arbitrary Read/Write primitives
○ Even a bug fix between CVE-2015-2546 and CVE-2016-0165*

2. Code modularity
○ Splitting large functions to modular sub-routines

3. Dynamic search for the precise field offsets in various structs

4. Shift to distinguish between multiple Windows 10 versions

5. Exploits became more sophisticated

Improvements in the exploits

The Customers

The Customers

APT28

Ursnif & Dreambot

GandCrab

Cerber

Turla

Magniber

Buhtrap

FIN8

CVE-2015-
2546

CVE-2016-
0040

CVE-2016-
0165*

CVE-2016-
0167

CVE-2016-
7255

CVE-2017-
0001

CVE-2017-
0263

CVE-2018-
8641

CVE-2019-
0859

CVE-2019-
1132

CVE-2019-
1458

0-day
1-day

Conclusion

Research Methodology Worked

Fingerprinting an exploit writer and using these
characteristics as unique hunting signatures.

Worked for both Volodya and PlayBit

16 Windows LPE Exploits
By two different developers between 2015-2019

A significant share of the exploitation market, specifically
for Windows LPE exploits.

How many more are out there?
SURVIVORSHIP BIAS

Crimeware and APT

The customers were both Crimeware (especially
Ransomware) and nation-sponsored groups.

You should try it too

THANK YOU
@megabeets_ @EyalItkin

